

Service Manual
CASSETTE TAPE DECK

Qpioneer

2. FRONT PANEL FACILITIES

Cassette compartment illumination

(1) POWER SWITCH

The power comes on when the POWER switch is depressed. The level meter and tape counter, and the cassette compartment illumination-will then come on.

(2) DUST COVER

When you are not using the deck, always keep this cover in place to prevent dust and dirt from adhering to the head section and rotating parts.
(3) REMAINING TAPE MARKER

If this marker is visible, it means that there is enough tape remaining for several minutes of recording or playback.
(4) INPUT (RECORDING LEVEL) CONTROLS

Use these to adjust the level of the input signals from the MIC jacks or rear panel INPUT jacks.
Turning these controls to the right increases the level,
The controls are coupled to the left and right channels, but you can also use them to adjust the right channel (back) and the left channel (front) independently.

(5)OUTPUT (PLAYBACK LEVEL) CONTROLS

Use these to adjust the output signal level during playback. Turning the controls to the right increases the level. The controls are coupled when turned but it is also possible to adjust the right channel (back) and the left channel (front) independently.
When playing back a reference tape ($160 \mathrm{nwb} / \mathrm{m}$), a reference playback level (0 dB) is obtained with these controls set to the " 6 " click stop position.

(6)TAPE SELECTOR

This selector allows the bias and equalizer characteristics to be selected during recording and the equalizer characteristics during playback in line with the type of tape you are using.
METAL: For using metal tapes
STD: For using ordinary or LH tapes
CrO_{2} : For using chrome tapes
$\mathrm{Fe}-\mathrm{Cr}$: For using ferrichrome tapes

(7)MIC JACKS

These are the input jacks for microphone recording. Plug the left channel microphone into the L jack and the right channel microphone into the R jack.

8 HEADPHONES JACK

This is the output jack for your stereo headphones. You will be able to hear sound from signals selected by the MONITOR switches. Use this jack when you want to monitor the quality of a recording or when you want to listen to a tape privately on the CT-F950. Adjust the output ievel with the OUTPUT controls.

NOTES:

- Use low-impedance headphones, If you use a high-impedance model, you will not be able to obtain sufficient volume.
- You will damage the microphone if you plug it into the HEADPHONES jack by mistake.

(9) INPUT SELECTOR SWITCH

Use this switch to select the program source which you intend to record.
LINE: Set to this position for recording a program source which is connected to the rear panel INPUT jacks.
MIC: Set to this position for recording signals from a microphone, or microphones, connected to the MIC jacks.
NOTE:
You will be able to record signals from the INPUT jacks if the LINE switch is depressed even when the microphones are plugged into the MIC jacks.

(10) DOLBY* NR SWITCH

Set this switch to ON for recording with the built-in Dolby noise reduction system and for the playback of tapes which have been recorded using the Dolby NR system.
(11)BIAS CONTROL

Use this control to adjust the bias in accordance with the characteristics of the tape being used. It is set so that the center (click stop) position corresponds to the standard bias.

(12)MONITOR SWITCHES

You will be able to listen to the recorded signals (playback sound) if you depress the TAPE while you are recording a program. You will be able to listen to the signals (recording input) just before they are recorded if you depress the SOURCE. Use these switches to monitor your recording. Depress the TAPE during playback.

[^0]
1. SPECIFICATION

Systems Compact cassette, 2-channel stereo	
Motors.....	Capstan drive; DC servo motor
	Reel drive; DC high torque motor x 1
Heads	Ferrite recording/
	playback combination type head $\times 1$
	erasing head $\times 1$
Fast Winding Time	Approximately 85 seconds
	(C-60 tape)
w and Flutter	No more than 0.04\% (WRMS)
Frequency Response	
-20dB Recording	
Standard, LH tapes	s 20 to $17,000 \mathrm{~Hz}$
	$(25 \text { to } 15,000 \mathrm{~Hz} \pm 3 \mathrm{~dB})$
Ferrichrome tape	20 to $19,000 \mathrm{~Hz}$
	(25 to $17,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$)
Chromium dioxide ta	e tape 20 to $19,000 \mathrm{~Hz}$
	(25 to $17,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$)
	. . 20 to 19,000Hz
Metal tap	(25 to $18,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$)
OdB Recording	
Chromium dioxide	e tape 20 to $11,000 \mathrm{~Hz}$
Metal tape	. 20 to $14,000 \mathrm{~Hz}$
Signal-to-Noise Ratio	io . . Dolby NR OFF; More than 59dB
	Dolby NR ON; More than 69dB
	(over 5 kHz)

Harmonic Distortion No more than 1.2\% (0dB)
Inputs (Sensitivity/Maximum allowable input/Impedance)
MIC (L, R); $0.3 \mathrm{mV} / 100 \mathrm{mV} / 30$ kilohms, 6 mm diam. jack (Reference MIC impedance; 250 ohms to 30 kilohms)
LINE $\times 2$; ($60 \mathrm{mV} / 25 \mathrm{~V} / 100$ kilohms) Pin jack
Outputs (Reference level/Maximum level/Load impedance)
LINE $\times 2$; $(450 \mathrm{mV} / 640 \mathrm{mV} / 50$ kilohms $)$ Pin jack HEADPHONES $\times 1 ; 63 \mathrm{mV} / 90 \mathrm{mV} / 8$ ohms, 6 mm diam.
jack
Semiconductors \qquad Transistors $\times 76$
Diodes $\times 84$, Photo interrupter $\times 1$
Subfunctions
ICs $\times 13$

- Dolby NR system (ON-OFF) with LED indicator lamp
- Fluorescent tube level meter (-20 to +7 dB) (Peak/Peakhold/average selector)
- Fluorescent tape counter
- Bias fine adjusting control knob
- Memory stop/Memory play
- Counter repeat/End repeat
- Input selector
- Automatic tape slack canceller
- Cassette compartment illumination
- Standby mechanism with unattended recording
- Tape Selector 4 position.
- Click Stop. Output VR.

Power Requirements
AC 120 V 60 Hz
Power Consumption . 54 watts
Dimensions $\ldots \ldots .420($ W $) \times 187(H) \times 365.5(\mathrm{D}) \mathrm{mm}$ Max. $16-9 / 16 \times 7-3 / 8 \times 14-3 / 8 \mathrm{in}$.
Weight . 10.1 kg (22 lb 4 oz.)
Furnished parts.
Stereo connecting cords with
pin plugs $\times 2$
Head cleaning swabs $\times 3$
Operating instructions $\times 1$

NOTE:

Specifications and the design subject to possible modification without notice due to improvements.
notes:

1. Reference Tapes: Standard \& LH: DIN 45513/BLATT6 or equiv.
$\mathrm{CrO}_{2}:$ DIN $45513 / \mathrm{BLATT}^{2}\left(\mathrm{CrO}_{2}\right.$) or equiv.
2. Reference Recording Level: Meter OdB indicating level 1160 nwb/m magnetic level = Philips cassette reference level)
3. Reference Signal: 333 Hz
4. Wow \& Flutter: JIS [3kHz, with acoustic compensation (weighted), rms value]
5. Frequency Response: Measured at $-20 d B$ level, DOLBY NA OFF, level deviation is $\pm 6 \mathrm{~dB}$ without indication.
6. Signal to Noise Ratio: Measured at the third harmonic distor tion 3% level, weighted.
7. Sensitivity: Input level (mV) required for reference recording level with input (REC) controls set to maximum.
8. Maximum Allowable Input: While decreasing settings of input (REC) level controls and increasing level at input jacks, this is the maximum input level (mV) at the point where recording amplifier output waveform becomes clipped.
9. Reference Output Level: Playback output level when meter indicates OdB.
10. Maximum Output Level: Playback output level with respect to reference recording level when output (PLAY) level controls are set to maximum.

$420(\mathrm{~W}) \times 187(\mathrm{H}) \times 365.5(\mathrm{D}) \mathrm{mm}$ Max.

* with rackmount adaptor JA-R102
* $480(\mathrm{~W}) \times 187(\mathrm{H}) \times 380(\mathrm{D}) \mathrm{mm}$ Max.

3. LEVEL DIAGRAM

PLAYBACK

(13)OPERATING SWITCHES

4 (REW): Depress this switch to rewind the tape. (The tape will travel at high speed from right to left.)
\rightarrow (FF): Depress this switch to send the tape forward at high speed. (The tape will travel from left to right.)

- (STOP): Depress this switch to stop the cape run and to release the operating switches.
- (PLAY): Depress this switch when playing back a tape. (The tape will travel from left to right.)
REC: Depress this switch together with the PLAY switch for recording.
This switch will not wurk when a cassette is not loaded or when the erasure prevention tabs of a loaded cassette have been broken off.
PAUSE: Depress this switch to stop the tape temporarily during recording or playback. Depress it again to allow the tape to continue to travel as before.
notes:
- When any of the operating switches are depressed, the corresponding indicator (except STOP mode) will come on signifying that the deck is set to that respective mode.
- All the operating switches are released (OFF) to stop mode when the POWER switch is turned OFF.

(14) COUNTER RESET BUTTON

Depress this button to reset the tape counter display to " 000 ."

(15)TAPE COUNTER

This indicates the position of the tape run. The counter reset to " 000 " when the power is switched on.

(16)LEVEL METER

This indicates the input level during recording and the output level during playback. as a peak meter, a peak hold meter or as a level meter.
The input signal level is indicated when the MONITOR switch SOURCE has been depressed, and the playback output level is indicated when the MONITOR switch TAPE has been depressed.

(17)DOLBY NR INDICATOR

This lights up when the DOLBY NR switch is set to ON and it indicates that a tape is being recorded or played back with the Dolby NR system.

(18) TAPE INDICATORS

METAL: This light comes on when the TAPE selector is set to METAL.
CrO_{2} : This light comes on when the TAPE selector is set to CrO_{2}.

(19) MEMORY/REPEAT INDICATOR

This indicator comes on when the MEMORY/REPEAT switches are depressed, signifying that the deck is set to the respective mode.

(20) MEMORY/REPEAT SWITCHES

MEMORY : Depress this switch and the tape will be rewound to
STOP that spot at which the tape counter was preset to " 000 " during rec/play, when the REW switch is depressed at any position you like.
PLAY: Depress this switch and the tape will be rewound to that spot at which the tape counter was preset to " 000 " during rec/play, and playback will start from that spot, when the REW switch is depressed at any REPEAT position you like.
COUNTER: Depress this switch when you want to play back a tape during playback or recording from the point at which the tape counter was set to " 000 " up to the end of the tape.
END: Depress this switch when you want to play back a tape from the beginning to the end of that tape.
OFF: Depress this switch during normal tape playback or recording to release the MEMORY and REPEAT switches.
(21)METER SWITCHES

PEAK: The meter functions as a peak level meter when this switch is depressed.
PEAK HOLD: The meter functions as a peak level meter and the highest level of the signals is indicated when this switch is depressed.
AVERAGE: The meter functions as a level meter when this switch is depressed.

(22) TIMER START SWITCHES

Depress these switches when you are playing back or recording a tape with the use of a timer.
REC: When this switch is depressed, the deck will automatically be set to the recording mode at the preset timer time, and recording will begin. Use this switch for recording FM programs when you are out of the house or otherwise occupied.
PLAY: When this switch is depressed, the deck will automatically be set to the playback mode at the preset timer time, and playback will begin. Use this switch for wake-up playback instead of an alarm clock.
OFF: Always depress this switch when you do not intend to record or playback a tape using the timer. (This will release the REC and PLAY switches of TIMER START.)

RECORDING

4. DISASSEMBLY

External Components

1. Remove the bonnet by undoing screws (1) to (6)
2. Remove the front. panel by undoing screws (7) to (12.
3. The function switch assembly is mounted onto the chassis by means of rubber bushes. Remove it by gently raising it up.
4. Remove the bottom plate by undoing screws (13) to (10).

Fig. 4-1 Disassembly of exterior parts

Mechanical Assembly

When replacing a motor or a belt, be careful of the sequence of disassembly and reassembly of the various components concerned.

1. Remove the capstan motor by undoing screws (1) to 3 .
2. Remove solenoid A by undoing screws (4) to 6.
3. Remove the plunger chassis assembly by undoing screws
 o
4. Remove the sub-chassis assembly by undoing screws (2) to
5. Remove the take-up motor by undoing screws (10) and , and remove solenoid B by undoing screws 2 and .

Fig. 4-5 Disassembly of mechanism assembly

Mechanical Assembly

After removing the front panel, undo screws (1)to6.

Fig. 4-2 Remove the mechanism assembly

Sub-head Assembly, Pinch-roller Arm Assembly and Pressure Arm

1. Remove the sub-head base assembly by undoing screws (1) and (2) and the socket-head hexagonal bolt.
2. Remove the feed side pinch-roller arm assembly by loosening the height adjuster (unt).
3. Remove the take-up side pinch-roller arm assembly by taking off E-washer (1).
4. Remove the pressure arm by taking off E -washer (2) When the pinch pressure spring is replaced with a new one, take care to ensure that the
new spring is properly seated. The requirements of the sub-section entitled "Pinch roller pressure adjustments" (Page 30) included in the section "Mechanical adjustments" shall be satisfied.

Fluorescent Indicator Tube

1. Remove the indicator lens assembly by undoing screws (1) to (4).
2. Remove the indicator amplifier assembly by undoing screws 5 to (1).
3. The fluorescent indicator tube is mounted on the indicator assembly. Remove it by means of a soldering iron. Take great care when handling the indicator tube so as to avoid damaging it.

Fig. 4-3 Remove the fluorescent indicator tube

Fig. 4-4 Remove the sub-head assembly, pinch-roller arm assembly and pressure arm

5. PARTS LOCATION

FRONT PANEL VIEW

FRONT VIEW WITH FRONT PANEL REMOVED

TOP VIEW WITH BONNET REMOVED

REAR PANEL VIEW

Bonnet
RNA-364

4P mount pin jack
Power cord
RKB-014
RDG-02 2
(RKB-016)

CT-F9E

6. BLOCK DIAGRAM

7. CIRCUIT DESCRIPTIONS

For details of the circuit of the CT-F950, refer to the block diagram on Page 13 and also the overall schematic diagram on Page 54.

7.1 RECORDING AND PLAYBACK CIRCUIT

Playback Equalizer Amplifier

The playback equalizer amplifier is an NFB type amplifier which uses a low-noise high-gain monolithic IC (AN370).

Playback Flat Amplifier $\left(\mathrm{Q}_{103}, \mathrm{Q}_{104}\right)$

The playback flat amplifier is a single transistor amplifier possessing flat frequency characteristics. It is used to amplify the output of the playback equalizer amplifier. A trap circuit is used at the input side to prevent entry of the recording bias.

Buffer Amplifier $\left(\mathbf{Q}_{105}, \mathbf{Q}_{106}\right)$

The buffer amplifier is an emitter follower type circuit which is used to take the output of the Dolby NR amplifier to the LINE OUTPUT terminals.

IC (PA4001)

The PA4001 was developed by PIONEER as a system IC for use in tape decks. It contains a microphone amplifier, headphone amplifier, flat amplifier and recording amplifier. Its block diagram is shown in Fig. 7-1.

Fig. 7-1 Block diagram of PA4001

Headphone Amplifier

The headphone amplifier consists of the headphone amplifier section of the PA4001. This is a complimentary amplifier having a gain of approximately 7.4 dB . The headphone output is taken off a resistive voltage divider.

Microphone Amplifier

The microphone amplifier consists of the microphone amplifier section of the PA4001. It has a gain of about 28 dB .

7.2 TAPE SELECTOR CIRCUIT

The CT-F950 has been designed to use metal, $\mathrm{CrO}_{2}, \mathrm{Fe}-\mathrm{Cr}$ and normal tapes. The tape selector circuit (see Fig. 7.2) is switched to suitable equalizer and bias levels according to the type of tape employed. This switching, plus the tape indicator ($\mathrm{CrO}_{2} / \mathrm{METAL}$) switching is performed by the TAPE switch S1301.

Playback Equalizer Switching Circuit

The playback equalizer may be switched to either of 2 positions: $70 \mu \mathrm{sec}$ for METAL/ $\mathrm{CrO}_{2}, \mathrm{Fe}-\mathrm{Cr}$ and $120 \mu \mathrm{sec}$ for STD. When the TAPE switch Sl301 is in the METAL position (or CrO_{2}, or Fe -Cr positions), a bias current flows from D_{309} (or D_{311} or D_{310}) to Q_{101} via R_{117}, resulting in the transistor being turned on. The C_{119} and R_{115} series circuit is thus connected to the playback amplifier to set up the 70μ sec equalizer amplifier. When S_{1301} is switched to the STD position, Q_{101} is turned off, thereby reverting to the $120 \mu \mathrm{sec}$ equalizer amplifier.

Recording Bias Generator and Bias Selector Circuit

Metal tapes require a bias current of about twice the level of the bias required for conventional STD tapes. For this reason the push-pull generator output is amplified by a bias amplifier (composed of step-up transformers L_{301} and L302plus coupling amplifiers Q_{306} and $\mathrm{Q}_{30} 7$) prior to being applied to the head. The bias amplifier input may be adjusted by the front panel BIAS control. Whereas more conventional bias controls vary the B voltage of the oscillator, the system employed in the CT-F950 also varies the erasure current at the same time. Since erasure efficiency is a particular problem with metal tapes, the CT-F950 has been designed to also vary the secondary side of the oscillator transformer.

Bias switching for each type of tape is achieved through the TAPE switch S1301. Bias level is changed by first maintaining a constant oscillation level by R320, and then changing the voltage by inserting resistors in parallel. The parallel connected resistors involved are R_{326} and $V_{3} 03$ for metal tapes, R_{327} and $V R_{302}$ for CrO_{2}, and R_{328} and VR301 for $\mathrm{Fe}-\mathrm{Cr}$ and STD.

Recording Equalizer Selector Circuit

The recording equalizer is switched to 4 separate positions (METAL, $\mathrm{CrO}_{2}, \mathrm{Fe}-\mathrm{Cr}$, and STD). Tran-
sistors Q401, Q403, Q405 and Q407 are turned on and off according to the position of the TAPE switch S1301, thereby switching the LC resonance circuit in the recording equalizer, amplifier.

Fig. 7-2 Tape selector circuit

7.3 LEVEL METER

The level meter circuit is shown in Fig. 7-3. It consists basically of 3 ICs (IC801, IC802 and IC803) and 1 microcomputer. Levels are displayed in digital form using a fluorescent indicator tube.

1. The signal obtained from the output terminals of the headphone amplifier is converted into a IC voltage by means of a logarithmic compression amplifier. This DC voltage becomes the reference input for the comparator.
2. The comparative input to the comparator is a DC voltage obtained by passing the indication condition of the level meter through a digital/ analog converter.
3. Accordingly, the comparator continually compares the reference voltage with the indication condition of the level meter, and sends signals to the microcomputer so as to maintain the comparative input (level meter indication condition) equal to the reference input.
The level meter is primarily a peak reading meter, however it is possible to use it either as a VU or PEAK HOLD meter by pressing switch S801-1 (VU) or S801-2 (PEAK HOLD).

Fig. 7-3 Level meter circuit

7.4 ELECTRONIC COUNTER

The electronic counter consists of a microcomputer ($\mathrm{ICso4}$) and a counter type fluorescent indicator tube (Fig. 7-7). Sensing pulses emitted from the mechanical assembly undergo wave shaping at Q_{801} to Q_{803} and then enter the microcomputer (IC804). The input pulses are added and subtracted in the memory of the computer, and the resultant numerical value is displayed at the counter indicator tube.

7.5 DOLBY NR PROCESSOR CIRCUIT

Recording Mode Operation

1. Input signals are first applied to the MPX filter where the FM broadcasting station's pilot signal is employed, and where an 85 kHz bias trap is employed to prevent mis-operation of the Dolby NR noise reduction system.
2. From the MPX filter, the signals are passed on to the buffer amplifier whose output is divided into 2 routes. The main signal is passed directly to the adding amplifier, while the sub-signal is passed via the side chain amplifier and clipper before being recombined with the main signal in the adding amplifier.
3. Besides being applied to the clipper, the side chain amplifier output is also passed via the voltage controlled amplifier and integrating amplifier back to the side chain amplifier input, forming a variable filter circuit.
4. In addition to the above, the side chain amplifier output is further applied to a high-pass filter and rectifier where it is converted into a DC voltage for control of the voltage controlled amplifier.
5. When the level of the signal passed through the high-pass filter is low, the rectifier output DC voltage will be almost " 0 ", resulting in a minimum turnover frequency for the variable filter. The level of the adding amplifier output will thus be 10 dB (above 5 kHz) higher than the level of the main signal, thereby contraction the dynamic range.
6. The clipper produces a time lag in the signal applied to the voltage-controlled amplifier, and since it is not capable of responding to sudden level changes, no uncontrolled signals will be applied to the adding amplifier.
7. When the level of the signal passed through the high-pass filter is high, the rectifier output DC voltage will also be high, and the variable filter turnover frequency will be increased. The subsignal level will therefore become almost " 0 ", so there will be no contraction of the dynamic range.

Playback Mode Operation

Although each section of the Dolby NR Processor operates in the same way as during recording mode, the sub-signal is derived from the output of the adding amplifier. And since the adding amplifier is an inversion amplifier (where output phase is opposite to input phase), the sub-signal will be of opposite phase, thereby forming an NFB loop.

In Dolby NR B noise reduction systems, contraction and expansion occur within a fixed frequency range determined by the variable filter circuit. And, in order to achieve perfectly symmetrical operation, it is necessary to fix a reference level for the operational point. This is the so-called "Dolby level", below which no contraction and expansion is performed.

Fig. 7-4 Dolby NR processor circuit

7.6 CONTROL CIRCUIT

PLAY Operation

1. When a cassette shell is loaded, the cassette shell detection switch will go into the SHELL position and the slack elimination circuit (Described later) will commence functioning.
2. When the PLAY switch S_{903} is pressed on, the voltage at Pin 17 of ICso1 will become a High level (Hereafter abbreviated to H level). Current from $+B_{1}$ will flow from the capstan motor CM to Q522. As a result, Q522 will become conductive, and CM will start to rotate, At the same time, current from + B1 will flow through Q321, the reel motor RM, R553 and Q517, and hence RM will also start or rotate.
3. The voltage at Pin 15 of ICs01 will also become an H level. Current from $+B_{1}$ will flow through the pinch solenoid SL1101, Q512 and Q511, hence SL1101 will operate and the unit will go into the PLAY mode.

REC Operation

1. When a cassette shell having erasure prevention tabs is loaded (The erasure prevention switch S_{1103} will go into the NO HOLE position), the PLAY switch S903 and the REC switch S904 will go on simultaneously. The operation of the pinch solenoid S_{1101} and the capstan motor CM is the same as for "PLAY operation".
2. The voltage on Pin 16 of IC_{501} becomes H level. As base current flows from $\mathrm{R}_{309}, \mathrm{R}_{310}$ to Q_{303}, Q303 becomes conductive, the bias oscillator circuit operates and the unit goes into the REC mode.
When a cassette shell which does not have erasure prevention tabs is loaded (S_{1103} goes into the HOLE position), Pin 5 of ICs01 will become Low level (Hereafter called L level), regardless of the position of S 904 , and hence the unit will go into the REC mode.

FF, REW Operation

1. When the FF switch S_{902} is turned on, Pin 22 of ICso1 will become H level. Current from $+B_{1}$ will flow through Qsin , the reel motor $R M$ and Q516, and thus RM will start to rotate.
2. Current from $+B_{1}$ will flow through the brake solenoid $\mathrm{SL}_{1102}, \mathrm{R}_{545}$ and Q_{513}, hence SL_{1102} will operate and the brake will be removed.
3. The REW operation is basically the same as the FF operation except that the polarity of the voltage supplied to RM is reversed.

PAUSE Operation

1. As previously explained, when the unit is in either the PLAY or REC modes, current from $+\mathrm{B}_{1}$ flows into the pinch solenoid SL_{1101}, the capstan motor CM , the reel motor RM and the bias oscillator circuit.
2. If now the PAUSE switch is pushed on, Pin 15 of ICsor 1 will become L level. As a result, SL_{1101} will not operate and RM will not rotate (Refer to section entitled "PLAY operation"). Hence the PLAY or REC condition will be temporarily removed.

TIMER START Operation

- PLAY Operation

1. Press the TIMER START PLAY switch Sso ${ }^{1-5}$ on, and then put the POWER switch on using the timer etc. While C812 is charging up, Pin 4 of ICsoi will become L level, and thus the unit will operate in the same way as if the PLAY switch S_{403} were put on.
2. When the power supply voltage reaches its final value (after about 4 seconds), Pin 14 of IC 501 will become H level, and the unit will go into the PLAY mode.

- REC/PLAY Operation

1. Press the TIMER START PLAY switch S801-4 on, and then put the POWER switch on using the timer etc. While C_{811} and C_{812} are charging up, Pins 4 and 5 of ICso1 will become L level, and thus the unit will operate in the same way as if the PLAY switch S903 and the REC switch S904 were put on simultaneously.
2. In the same way as for PLAY operation, Pin 14 of ICsos becomes H level, whereupon the unit commences REC/PLAY operation.

MEMORY STOP Operation

Press the MEMORY STOP switch on, and then press the REW switch on. When the tape counter indication reaches " 999 ", the REW operation will stop.

1. Press the MEMORY STOP switch S_{801-1} on, and press the REW switch S901 on. When the tape counter indication reaches " 999 ", a pulse will be sent from the microcomputer (IC804).

Fig. 7-5 Control circuit

Current will flow from R859 to Q807, thus Q807 will be turned on, and as a result of the integral pulse, Pin 11 of ICso1 will momentarily become L level.
\therefore When Pin 11 of ICso1 becomes L level as a result of the program within the IC, the output will go into the STOP mode, and thus the unit will cease operation.

IEMORY PLAY Operation

Press the MEMORY PLAY switch on, and then put the REW switch on.
When the tape counter indication reaches " 999 ", a pulse will be sent from the microcomputer (IC Cursent will flow from R8ss to Q807, Thus turning on Q807, and as a result of the integral pulse, Pin 11 of ICsoi will momentarily become L level.
When Pins 9 and 10 of ICsos are to Level by means of the program in the IC, the unit will momentarily go into the STOP mode and then commence PLAY.

ounter Repeat

Press the REPEAT (counter) switch on. When le tape stops during PLAY or REC/PLAY (auto op), the unit will automatically go into the REW ode, and when the tape counter indication :aches "999", it will revert to PLAY.
Press the REPEAT (COUNTER) switch S_{802-3} on, and set Pins 8 and 9 of ICso1 to the L level.
When the tape stops during PLAY or REC/ PLAY, Pin 12 of IC_{501} will momentarily go to the L level. When Pins 8 and 9 of IC_{501} are set to the L level by means of the program in the IC, and Pin 12 goes to the L level, the unit will automatically go into the REW mode.
When the counter indication becomes "999", a pulse will be emitted from the microcomputer (IC804). Current will flow from R859 to Q807, resulting in $\mathrm{Qso}_{7} 7$ being turned on, while Pin 11 of ICs01 will momentarily go to the L level as a result of the integral pulse.
If Pin 11 of IC_{501} goes to the L level during the REW operation of the unit, resulting from Pin 12 going to the L level, the unit will go into the PLAY mode as a result of the program contained IC501.
5. Because of the program contained in ICso1, COUNTER REPEAT is not possible during FF or REW (Auto stop is possible).

End Repeat

Press the REPEAT (END) switch on. If the tape stops during PLYA or REC/PLAY (auto stop), the unit will automatically go into the REW mode, and when the tape has completely rewound, the unit will once again go into the PLAY mode.

1. Press the REPEAT (END) switch S802-2 on, and set Pins 8 and 9 of ICso1 to the L level.
2. For details of the REW operation, refer to paragraph 2 "COUNTER REPEAT".
3. When the tape completely rewinds, Pin 12 of ICso1 will once again momentarily go to the L level.

Pinch Solenoid Switching Circuit

This circuit is designed to protect the pinch solenoid from overheating. It operates after the PLAY switch has been pressed on, by applying a high voltage (approximately 13 V) to the pinch solenoid for a period of about 0.5 seconds, in order to increase its attractive force, and then reducing the voltage to about 6 V after the solenoid has operated (Fig. 7-6).

1. When the PLAY switch S_{903} is pressed on, Q511 becomes conductive, the pinch solenoid SL1101 operates and the unit goes into the PLAY mode (Refer to section entitled "PLAY mode").

Fig. 7-6 Pinch solenoid switching circuit
2. Current will flow from $+B$ through R540, C507 and $Q_{5} 12$. A voltage approximately equal to the +B voltage (approximately 13 V) will be applied to the pinch solenoid SL 1101 until Qs 12 becomes fully conductive.
3. When C507 becomes fully charged (after an interval of about 0.5 seconds), Qs 12 will be reduced by R_{541} to the minimum value (approximately 6 V) necessary to hold the plunger in position.
4. If Pin 12 of ICsol^{1} goes once again to the L level during the REW operation of the unit, resulting from Pin 12 going to the L level, the unit will go into the PLAY mode as a result of the program contained in ICso1.
5. Because of the program contained in IC_{501}, END REPEAT is not possible during FF or REW (Auto stop is possible).

Auto Stop Circuit

This circuit is used to automatically release the mechanism in the event that the tape stops during PLAY, REC, FF or REW. It employs a photointerrupter type switch linked to the take-up reel by means of a belt, in order to detect the running of the tape (Fig. 7-7).

1. When the tape is running, pulse signals emitted from the photo-interrupter (TLPs and hence Q801, Q802, Q803, Q504 and Q503 switch on and off continuously. At the s time, C503 will charge and discharge repeate While Q503 is turning on and off, the poter of point A will be relatively low, and thus 6 will turn off.
2. When the tape stops running, pulse signals f the photo interrupter lamp will disappear, thus Q503 will go off. When this happ Cs03 will charge up. The potential of poin will start to rise, and Q502 and Qso1 will turned on. Consequently, Pin 12 of ICso1 become L level, and the unit will go into STOP mode.
3. When either the POWER switch is turned and off, or the PAUSE button is pressed H level will be applied to the base of Q503 f D503 and D504 and thus the potential at poir wili not rise. Consequently, the unit will go into the STOP mode.

Fig. 7-7 Auto stop circuit

Tape Slack Elimination Circuit

The CT-F950 employs a closed loop capstan to provide constant speed drive for the tape. If slackness appears in the tape during PLAY, it will be impossible to obtain the necessary loop tension, and thus the normal tape head contact will be lost. The tape slack elimination circuit is designed to take up any slack when a cassette tape is loaded, by causing the supply reel to rotate in the REW direction (Fig. 7-8).

1. When a cassette shell is loaded, the cassette tape switch S_{1102} will go into the SHELL position.
As a result, current will flow from $+\mathrm{B}_{3}$ through R568, C508 and Qs23, and thus Q523 will be turned on.
2. When Q524 becomes conductive, current will flow from $+B_{3}$ through Q524, D513 R543 and Q513, and thus Q513 will become conductive. Accordingly, current will flow from $+B_{1}$ through the brake solenoid SL1101, R545 and Qs13, and thus SL_{1101} will operate (Brake will be removed).
3. At the same time, current from $+\mathrm{B}_{3}$ will flow through Q524, R546 and Q518, and as a result Q518 will be turned on.
4. When $Q_{5} 18$ is turned on, current from $+B_{1}$ will flow through Q_{520}, R_{555}, R_{54} and Q_{518} and hence Q_{520} will become conductive. When Q_{520} and Q_{528} become conductive, current will flow from $+B_{1}$ through Qs_{20}, the reel motor RM, R_{554} and Q_{518}. As a result, RM will rotate in the reverse direction and take up the slack.
The time required to take up any slack will be determined by the charging time of Cso8 (approximately 0.5 seconds), and the rotational torque of RM will be determined by the value of Rs 54.
5. Muting when the unit is switched from STOP to REC is basically the same as that described in Paragraphs 1 to 3 . Pin 16 of IC_{501} will become H level, and hence current will flow through R_{522} to Q505. When Q505 becomes conductive, Q506, Q507 and Q_{101} will be turned off, and thus the muting condition will be removed from the recording amplifier.

Fig. 7-8 Tape slack elimination circuit

Timing Chart 2

Timing Chart 1

7.7 MUTING CIRCUIT

Muting When the Power Switch is Pressed On and Off

This circuit is designed to eliminate noise (e.g. click noise) when the POWER switch is pressed on or off (Fig. 7-9).

- When Power Switch is Pressed On

1. When the POWER switch is pressed on, the emitter voltage of Q_{601} will immediately rise to approximately 5.6 V . Because current does not flow into C_{603}, the voltage across its terminals will be 0 V . Consequently, in the Schmitt trigger comprising Q_{602} and Q_{603}, Q_{602} will be turned off and Q_{603} will be turned on. Also, Q_{504} will be turned off and Q_{505} will be turned on, and thus the 5.6 V source will produce a current flow through D_{401} into Q_{107} and Q_{109}. As a result, Q_{107} and Q_{109} will become conductive, thus short circuiting the LINE OUTPUT.
2. Meanwhile, C_{607} and C_{615} rapidly charge up. When C_{608} charges up, the base potential of Q_{608} will become -6 V , and hence Q_{608} will be turned off.
Consequently, the voltage across the terminals
of ZD603 will become approximately 6 V . Thi voltage will cause current to flow through R_{61} : and charge up C603. When the voltage acros C_{603} reaches the reversing level of the mutins circuit (Approximately 4 seconds after thi POWER switch has been pressed on), Q_{602} wil turn on and Q603 will turn off. Because Q604 will be turned on, and Q_{605}, Q_{107} and Q_{109} will be turned off, the LINE OUTPUT muting condition will be removed.

- When the Power Switch is Pressed Off

1. When the power switch is pressed off, the charges stored on C_{607} and C_{615} will rapidly decay. Consequently, the charge on C603 wil flow through D_{603} and R_{603} into the base o Q614. When Q_{608} becomes conductive, the charge on C_{603} will rapidly decay.
2. Consequently, Q_{602} will now be turned on, anc Q604 turned off. Q604 will be turned off, anc Q605, Q107 and Q109 turned on, hence the LINE OUTPUT will be muted. After the POWER switch has been pressed off, the powe, supply for the unit will be charged on C602.

Fig. 7-9 Muting circuit 1

Muting during FF, REW and STOP

This circuit is designed to eliminate noise (e.g. motor noise), during FF, REW or STOP (Fig. 7-10).

1. During FF, REW or STOP, Pin 20 of ICsol will become H level, and hence base current will flow into Q508.
2. When Q_{518} becomes conductive, Q_{509} and Q_{510} will also become conductive. Current from $+B_{3}$ will flow through $Q_{510}, Q_{402}, S_{101-3 .} R_{175}$, R_{177}, Q_{107} and Q_{109}. Accordingly, Q407 and Q409 will become conductive, and the LINE OUTPUT will be muted.
3. At the same time, current will flow from $+B_{3}$ through $\mathrm{Q}_{510}, \mathrm{D}_{517}, \mathrm{R}_{243}$ and Q_{201}. Q_{201} will thus become conductive and mute the recording amplifier.
4. When the MONITOR switch S401-3 is in the SOURCE position, the LINE OUTPUT will not muted.
Muting During Changeover from Stop to Play (or REC)

This circuit is designed to prevent switching noise when the PLAY or REC switches are operated (Fig. 7-10).

1. When the unit is in the STOP condition, Q_{107}, Q109 and Q201 $_{201}$ will be conductive, and hence the LINE OUTPUT and the recording amplifier will be muted. Also, C506 will be charged (Refer to previous section entitled "Muting when unit is in STOP condition").
2. When the PLAY switch is pressed on, Pin 20 of ICs01 will become L level, and hence current will not flow through Qsos.
3. When Q_{508} becomes non-conductive, the charge on C506 will decay via R_{529}. During the interval that C506 is discharging (approximately 1 second), Q509, Q510, Q107 and Q109 will become conductive. After about 1 second, the unit will go into the PLAY condition, and thus switching noise will be muted.
4. When the unit is in the PLAY condition, current will flow from $+B_{3}$ through Rs23, Rs24 and Q506, and thus Q506 and Q507 will go on. Consequently, current from $+\mathrm{B}_{3}$ will flow through Q507, D508, R243 and Q201, and hence the recording amplifier will remain muted.

Fig. 7-10 Muting circuit 2
5. Muting when the unit is switched from STOP to REC is basically the same as that described in Paragraphs 1 to 3 . Pin 16 of IC_{501} will become H level, and hence current will flow through R_{522} to Q_{505}. When Q_{505} becomes conductive, $\mathrm{Q}_{506}, \mathrm{Q}_{507}$ and Q_{201} will be turned off, and thus the muting condition will be removed from the recording amplifier.

Bias Muting Circuit

During recording, the bias signal is sometimes recorded due to the increase in the relative speed of the tape and head during the on/off switching of the PAUSE or release of the recording controls. The recorded bias signal can be heard as a "click" noise when the tape is played back at its fixed speed; the purpose of this circuit is to suppress this noise.

1. During REC/PLAY operation (when the REC and PLAY switches are turned on simultaneously), the No. 16 pin on ICsor reaches H level, and because the Q303 receives bias and comes on, the oscillator circuit operates.
2. When the PAUSE switch is turned on, the No. 19 pin of IC501 reaches H level, and the bias comes on through the $\mathrm{D}_{507}-\mathrm{R}_{520}-R_{530}$ route to send bias current to Q509.
3. With Q509 on, Q510 is also turned on, and $+B$ takes the $\mathrm{D}_{517}-\mathrm{R}_{301}$ route to turn on Q_{301}.
4. With Q301 turned on, C303 and R_{303} follow a fixed time constant and turn on Q_{302} by reducing the emmiter voltage.
5. When Q302 comes on, the bias current flows through the condenser and is grounded. Bias current is supplied to neither the base of Q_{306}, Q307 nor to the record head.
6. When the PAUSE switch is set to OFF, the PAUSE operation is halted and recording resumes. However, even if the No. 19 pin on ICso1 reaches L level, since the discharge time for C_{303} (determined by the C_{303} and R_{308} time constants) only turns on Q302, there is no bias supplied to the record head.

Fig. 7-11 Bias muting circuit

8. MECHANICAL ADJUSTMENTS

8.1 PINCH ROLLER PRESSURE ADJUSTMENT

1. Put the unit into the PLAY condition.
2. Using a tension gauge (Stick weighing instrument: approximately 500 g full scale), gently drop the pinch arm (Fig. 8-1).
3. The force necessary to separate the pinch roller from the capstan shall be between 360 and 440 g at the take-up side, and between 90 and 130 g at the supply side. If outside these values, reset the pinch pressure spring.
4. If Paragraph 3 cannot be satisfied by resetting the pinch pressure spring, replace it with a new one.

8.2 TAPE SPEED ADJUSTMENT

1. Connect a frequency counter to the OUTPUT terminals.
2. Replay the 3 kHz part of the test tape STD-301. Adjust the semi-fixed resistor in the motor until the frequency at the start of the tape falls within the range $2,995 \mathrm{~Hz}$ to $3,010 \mathrm{~Hz}$ (Fig. 8-2).
3. When the semi-fixed resistor is turned in the clockwise direction, the tape speed will increase, and vice-versa.

8.3 TAPE GUIDE ADJUSTMENT

Adjustment Standard

Put the unit into the PLAY mode, and check that the tape is running normally without curling around the head guides (Fig. 8-3).

Method of Adjustment

If the tape curls around the head guides, turn the height adjuster to the left or right so as to obtain a suitable tape height.

Post-adjustment Check

Put the unit into the PLAY mode, and check that the tape does not come into contact with the head guide.

Fig. 8-1 Pinch roller pressure adjustment

Fig. 8-2 Tape speed adjustment

Fig. 8.3 Tape guide adjustment

9. ELECTRICAL ADJUSTMENTS

Before performing electrical adjustments, check the following items.

1. Ensure that all mechanical adjustments have been completed.
2. Adjust the measuring level to $0 \mathrm{dBv}=1 \mathrm{~V}$, and place a $50 \mathrm{k} \Omega(47 \mathrm{k} \Omega$ to $52 \mathrm{k} \Omega)$ dummy resistor across the line output terminals.
3. Perform adjustments using the A -side (the side with the label) of the specified test tapes.

STD-331A : For overall replay
STD-341A : For replay adjustments
STD-601 : STD blank tape
STD-603 : CrO_{2} blank tape
STD-604 : METAL blank tape
4. Obtain the following measuring instruments. Millivoltmeter, low frequency generator oscilloscope, attenuator.
5. Unless otherwise defined, the term "recording condition" as used in this manual shall mean the condition when a cassette shell is loaded, and both the PLAY and REC switches are pressed.
6. Unless otherwise specified, adjustments shall be performed on both L and R channels.
7. Clean the heads and also remove any residual magnetism using a head demagnetizer.
8. Always perform adjustments in the specified sequence. If the sequence is changed, the performance of the unit may be degraded.

Adjustment Sequence

1. Head azimuth adjustment
2. Playback equalizer adjustment
3. Playback level adjustment
4. Level meter 0dB adjustment
5. Approximate adjustment of recording current
6. Erasure current adjustment
7. Bias trap adjustment
8. Approximate adjustment of recording bias
9. Recording equalizer and variable equalizer adjustments
10. Recording and playback frequency response adjustment
11. Recording level adjustment
12. Recording dolby NR adjustment
13. Playback dolby NR adjustment
14. Output level adjustment

Fig. 9-1 Recorded contents of test tape

9.1 HEAD AZIMUTH ADJUSTMENT

1. Connect the millivoltmeter to the OUTPUT terminals.
2. Turn the OUTPUT level control to the maximum position, and put the TAPE switch to STD.
3. Replay the -20 dB part of the 10 kHz test tone on the STD-341A test tape. Turn the head azimuth adjustment screw until the output from both L and R channels becomes a maximum (Fig. 9-2).
4. After adjustment, apply lock paint to the adjustment screw.

Fig. 9-2 Head azimuth adjustment

9.2 PLAYBACK EQUALIZER ADJUSTMENT

1. Connect an millivoltmeter to the OUTPUT terminals.
2. Set the TAPE switch to STD, turm VR_{103} and VR 104 up to maximum positions, and VR107 and VR108 to central positions.
3. Play the $333 \mathrm{~Hz},-20 \mathrm{~dB}$ portion of the STD341A test tape, and adjust the OUTPUT volume control to obtain a $-20 \mathrm{dBv}(0.1 \mathrm{~V})$ reading in the millivoltmeter.
4. Next play the $10 \mathrm{kHz},-20 \mathrm{~dB}$ portion of the same test tape, and adjust V_{101} (left channel) and V_{102} (right channel) to obtain a +1 dB level difference from the 333 Hz output reading.
5. Then, play back the $14 \mathrm{kHz},-20 \mathrm{~dB}$ (signal) and confirm with the mV meter indication that the output difference is over +0.5 dB when compared with the previously played 333 Hz signal. When less than 0.5 dB , adjust in accordance with the flow chart on page 37 .
6. Change the TAPE switch to the METAL position (or CrO_{2} or $\mathrm{Fe}-\mathrm{Cr}$ positions), and check that the frequency response referenced at 333 Hz is within $-4.0 \pm 1 \mathrm{~dB}$ at 10 kHz .

9.3 PLAYBACK LEVEL ADJUSTMENT

The playback level must be carefully adjusted owing to the fact that it will determine the Dolby NR level.

1. Connect the millivoltmeter to TP terminals No. 26 (left) and No. 25 (right) on the mother
ass'y (The OUTPUT potentiometer may be set at any position).
2. Replay the 0 dB part of the 333 Hz test tone on the STD-341A test tape. Adjust VR 103 :L-ch. and $\mathrm{VR}_{104}: \mathrm{R}$-ch. until the respective indications on the millivoltmeter become $1 \mathrm{dBv}(1.12 \mathrm{~V})$.

9.4 LEVEL METER OdB ADJUSTMENT

1. Connect millivoltmeters to the TP terminals No. 30 (left) and No. 29 (right) on the mother ass'y.
2. Set the MONITOR switch to the SOURCE position.
3. Apply a $333 \mathrm{~Hz},-10 \mathrm{dBv}(316 \mathrm{mV})$ signal to the INPUT terminals, and adjust the INPUT level controls so that the millivoltmeters read -3 dBv (700 mV).
4. Then immediately adjust VR8o1 (left) and VR802 (right) in the indicator amplifier ass'y so that the level meters read 0 dB at this time. First turn VR801 and VR802 full around counterclockwise, then turn back clockwise and stop when the 0 dB segment lights up.
5. Also check that the following readings are obtained in the level meters when the input signal level is changed.

Input Signal	Level Meter Reading
$333 \mathrm{~Hz},-5 \mathrm{dBv}(560 \mathrm{mV})$	$+5 \pm 2 \mathrm{~dB}$
$333 \mathrm{~Hz},-26 \mathrm{dBv}(50 \mathrm{mV})$	$-16 \pm 2 \mathrm{~dB}$

Fig. 9.3 Adjustment points

9.5 APPROXIMATE ADJUSTMENT OF RECORDING CURRENT

1. Connect millivoltmeters to the TP terminals No. 30 (left) and No. 29 (right) in the mother ass'y.
2. Short circuit the base of Q303 (mother ass'y) to ground (circuit board pattern ground).
3. Set the MONITOR switch to SOURCE, and turn the DOLBY NR switch off. Then apply a $333 \mathrm{~Hz},-10 \mathrm{dBv}(316 \mathrm{mV})$ signal to the INPUT terminals.
4. Start the CT-F950 in recording mode.
5. Adjust the INPUT level control to obtain readings of $-3 \mathrm{dBv}(700 \mathrm{mV})$ in the millivoltmeters.
6. Next connect one millivoltmeter across TP terminal No. 40 (left) and ground (mother ass'y), and the other across TP terminal No. 43 (right) and ground.
7. Set the TAPE switch to the STD position, and adjust VR_{205} (left) and VR_{206} (right) to obtain readings of 1.55 mV .
8. Also check that the following readings are obtained in the millivoltmeters when the TAPE switch is changed to the other positions.

TAPE Switch Position	AC Millivoltmeter Reading
METAL	2.14 mV
CrO_{2}	1.84 mV
$\mathrm{Fe}-\mathrm{Cr}$	1.45 mV

9.6 ERASURE CURRENT ADJUSTMENT

1. Set the TAPE switch to the METAL position, and turn the INPUT volume control down to minimum level. Then connect an millivoltmeter across the mother ass'y TP terminals Nos. 45 and 76.
2. Proceed in recording mode without any input signal (but with an unrecorded tape being used).
3. Adjust VR303 so as to obtain a millivoltmeter reading of 160 mV .

9.7 BIAS TRAP ADJUSTMENT

1. Connect millivoltmeters across the mother ass'y TP terminal No. 42 (left) and ground, and TP terminal No. 39 (right) and ground.
2. Set the TAPE switch to the METAL position, and turn the INPUT level control up to maximum level. Proceed in recording mode (with unrecorded tape) but without any input signal.
3. Adjust L_{203} (left) and L_{204} (right) to obtain minimum readings in the millivoltmeters.
4. Then change the MONITOR switch to the SOURCE position, and connect the millivoltmeters across the mother ass'y TP terminal No. 16 (left) and ground, and TP terminal No. 15 (right) and ground. Adjust L101 (left) and L102 (right) to again reduce the millivoltmeter readings to minimum level.

Note:
This adjustment must be performed as carefully as possible since the result will influence the frequency response during recording and playback modes when the DOLBY $N R$ switch is on.

Fig. 9-4 Adjustment points

9.8 APPROXIMATE ADJUSTMENT OF RECORDING BIAS

1. Set the BIAS control to the center click-stop position, and the TAPE switch to the METAL position. Then proceed with the CT-F950 in recording mode.
2. Connect an millivoltmeter across the mother ass'y TP terminal No. 40 (left) and ground, and another meter across TP terminal No. 43 (right) and ground.
3. Adjust VR305 (left) and VR304 (right) so that the meters read 12 mV .
4. Next change the TAPE switch to STD, and adjust $V_{3} 301$ to obtain meter readings of 6 mV . Change the switch again to the CrO_{2} position, and adjust VR_{302} to obtain meter readings of 9.5 mV .
5. Then set the MONITOR switch to the SOURCE position, and apply a $333 \mathrm{~Hz},-10 \mathrm{dBv}(316 \mathrm{mV})$ signal to the INPUT terminals.
6. Connect the millivoltmeters to the OUTPUT terminals, and adjust the INPUT level controls so that the meters read $-10 \mathrm{dBv}(316 \mathrm{mV})$.
7. After completing the above adjustments, set the MONITOR switch to the TAPE position, and record and play back the $333 \mathrm{~Hz},-10 \mathrm{dBv}$ (316 mV) signal onto/from the STD-601 test tape. Then after first turning VR_{305} (left) and VR304 (right) counterclockwise, turn them back clockwise and stop at the maximum position.

Fig. 9-5 Output level

9.9 RECORDING EQUALIZER AND VARIABLE EQUALIZER ADJUSTMENTS

1. Connect millivoltmeters to the mother ass'y TP terminals No. 30 (left) and No. 29 (right).
2. Short circuit the base of Q303 (mother ass'y) to ground (circuit board pattern).
3. Set the MONITOR switch to SOURCE, and apply a $333 \mathrm{~Hz},-10 \mathrm{dBv}(316 \mathrm{mV})$ signal to the

INPUT terminals. Then proceed in recording mode.
4. Adjust the INPUT level controls to obtain meter readings of $-3 \mathrm{dBv}(700 \mathrm{mV})$.
5. Next connect an millivoltmeter to TP terminal No. 5 in the IC amplifier ass'y, and adjust VR203 and VR_{204} to obtain the same output levels for the 333 Hz and 10 kHz input signals. (Variable equalizer adjustment).
6. Then set the TAPE switch to the STD position, and connect millivoltmeters across the mother ass'y TP terminal No. 40 (left) and ground, and TP terminal No. 43 (right) and ground. Switch the input to 15 kHz and obtain the same AC millivoltmeter readings by employing an attenuator in the input stage. Adjust L401 (left) and L402 (right) so that the amount of attenuation required is 13.0 dB . (STD recording equalizer adjustment).
7. Change the TAPE switch setting to METAL, and adjust in the same way as described above in step 6. In this case, adjust L_{403} and L 404 so that the attenuation required will be 16.0 dB . (METAL recording equalizer adjustment).
8. Finally set the TAPE switch to the CrO_{2} and $\mathrm{Fe}-\mathrm{Cr}$ positions, the required amount of attenuation being $19.6 \pm 1.5 \mathrm{~dB}$ and $12.6 \pm 1.5 \mathrm{~dB}$ respectively.

9.10 RECORDING AND PLAYBACK FREQUENCY RESPONSE ADJUSTMENT

1. Connect millivoltmeters to the OUTPUT terminals.
2. Set the TAPE switch to STD, and the MONITOR switch to SOURCE, and apply a 333 Hz , $-30 \mathrm{dBv}(31.6 \mathrm{mV})$ signal to the INPUT terminals. Adjust the INPUT level controls so as to obtain meter readings of $-27 \mathrm{~dB}(44.6 \mathrm{mV})$.
3. Set the Monitor switch to TAPE, record 333 Hz , $-30 \mathrm{dBv}(31.6 \mathrm{mV})$ and $10 \mathrm{kHz},-30 \mathrm{dBv}$ signals onto the STD-601 test tape. Play these sections back again, and adjust VR304 (left) and VR305 (right) so that the output difference between these two signals is about 0 dB at 10 kHz .
4. Then, confirm that the record/playback frequency response of test tape STE-601 is within the fixed standard range (page 40).
5. Set the tape selector switch to METAL, and use the STD-604 test tape as in the previous instructions. Record the 333 Hz and 10 kHz signals and play them back. Then, confirm that the playback output deviation of the 10 kHz signal is within $+1 \pm 1 \mathrm{~dB}$ of the 333 Hz signal.
6. When a certain type of tape does not meet with the standards specified in section 4 , confirm that the adjustments are within the standards of recording and playback frequency response adjustment with the Dolby NR switch on, and then adjust VR205 (Lch) and VR206 so that the value in section 3 is within the range of $-2.5 \pm 0.5 \mathrm{~dB}(800-710 \mathrm{mV})$.

9.12 OUTPUT LEVEL ADJUSTMENT

1. Connect millivoltmeters to the mother ass'y TP terminals No. 26 ($\mathrm{L}-\mathrm{ch}$) and No. 25 (R-ch), and turn VR_{103} and VR_{104} down to minimum positions.
2. Apply the 333 Hz signal to the mother ass'y TP terminals No. 16 (left) and No. 15 (right), and adjust the INPUT level controls so that the millivoltmeters read $-3 \mathrm{dBv}(700 \mathrm{mV})$.
3. Set the OUTPUT level controls to the center click-stop positions, and connect millivoltmeters to the OUTPUT terminals. Adjust VR_{107} (left) and VR_{108} (right) so as to obtain meter readings of $-7 \mathrm{dBv}(446 \mathrm{mV})$.

9.13 RECORDING DOLBY NR ADJUSTMENT

1. Connect up the millivoltmeter to TP terminals No. 29 (left) and No. 30 (right) on the mother ass'y.
2. Apply a $-10 \mathrm{dBv}(316 \mathrm{mV}) 1 \mathrm{kHz}$ signal to the INPUT terminals.
3. Put the DOLBY NR switch off, and then adjust
the INPUT potentiometer so that the indication on the millivoltmeter becomes 0 dBv (1V).
4. Next, set the level of the input signal of Paragraph 2 above, to $-50 \mathrm{dBv}(3.16 \mathrm{mV})$.
5. Put the DOLBY NR switch on. Adjust VR201 (left) and VR_{202} (right) so that the millivoltmeter indication becomes $-34 \mathrm{dBv}(19.9 \mathrm{mV})$.

9.14 PLAYBACK DOLBY NR ADJUSTMENT

1. Connect the millivoltmeter to terminals No. 25 (left) and No. 26 (right) on the mother ass'y.
2. Put VR 103 and VR_{104} in the minimum settings.
3. Apply a 1 kHz signal to TP terminals No. 15 (left) and No. 16 (right) on the mother ass'y. Adjust the input level so that the millivoltmeter indication becomes 0 dBv (1V).
4. Next, apply an input which is 34 dB below that of paragraph 3 above.
5. Put the DOLBY NR switch on. Adjust VR_{106} : L-ch and VR 105 : R-ch. so that the indication on the millivoltmeter becomes -40 dBv (1 mV).

Fig. 9-7 Adjustment points
6. If outside the specified standards, refer to "9-6, ERASURE CURRENT ADJUSTMENT" and adjust VR303 so that the value is within the range of $160 \pm 20 \mathrm{mV}$.
7. Then, confirm that the record/playback frequency response for metal tape is within the fixed standard range.
8. Set the tape selector switch to CrO_{2} and using test tape STD-603 as in the previous instructions, record and play back the 333 Hz and 10 kHz signals. Then confirm that the playback output deviation of the 10 kHz signal is within $0 \pm 1 \mathrm{~dB}$ of the 333 Hz signal. If outside the specified standards, adjust VR302.
9. Then, confirm that the record/playback frequency response for test tape STD-603 is within the fixed standard range (page 40).
10. Set the tape selector switch to $\mathrm{Fe}-\mathrm{Cr}$; record and play back the 333 Hz and 10 kHz signals on a SONY DUAD C-60 and confirm that they are within the fixed standard range (page 40).
11. Set the Dolby switch to ON, and confirm that the record and playback frequency response for all types of tapes is within the fixed standard range (page 40).

* when making adjustments, also refer to the flow chart on page 37.

9.11 RECORDING LEVEL ADJUSTMENT

NOTE:
Since this adjustment sets the recording level, it must be performed accurately.

1. Set the MONITOR switch to SOURCE, and apply a $333 \mathrm{~Hz},-10 \mathrm{dBv}(316 \mathrm{mV})$ signal to the INPUT terminals.
2. Turn the DOLBY NR switch off, and connect millivoltmeters to the mother ass'y TP terminals No. 30 (left) and No. 29 (right). Adjust the IN. PUT level control so that the meters read -3 dBv (710 mV).
3. Then set the TAPE switch to the STD position, and turn the DOLBY NR switch on, and also change the MONITOR switch to the TAPE position. Record the $333 \mathrm{~Hz}-10 \mathrm{dBv}(316 \mathrm{mV})$ signal onto the STD-601 test tape, and adjust VR_{205} (left) and VR_{206} (right) so as to obtain millivoltmeter readings of $-2.5 \mathrm{dBv}(750 \mathrm{mV})$. during playback.
4. Set the TAPE switch to CrO_{2}, and then to METAL, and record the $333 \mathrm{~Hz},-10 \mathrm{dBv}$ (316 mV) signal onto the STD-603 test tape and the STD-604 test tape respectively as described above under step 3. During playback with both tapes, check that millivoltmeter readings are within $-3 \mathrm{dBv}(710 \mathrm{mV}) \pm 1.5 \mathrm{~dB}$ in the both cases.

Fig. 9-6 Adjustment points

Playback adjustment flow chart

* Using STD-331A and the STD position, with DOLBY NR OFF.

Note:
The frequency characteristics for the R channel shall be obtained by subtracting $1 d B$ from the value indicated on the meter at 40 Hz and 63 Hz respectively.

* Using STD-601 and the STD position, with DOLBY NR OFF.

* Using STD-601 and the STD position, with DOLBY NR ON.

* Using STD-603 and the CrO_{2} position, with DOLBY NR ON.

* Using STD-603 and the CrO_{2} position, with DOLBY NR OFF.

* Using SONY DUAD C-60 and the Fe-Cr position, with DOLBY NR OFF.

* Using SONY DUAD C-60 and the $\mathrm{Fe}-\mathrm{Cr}$ position, with DOLBY NR ON.

* Using STD-604 and the METAL position, with DOLBY NR OFF.

* Using STD-604 and the METAL position, with
DOLBY NR ON.

10. PACKING

Parts List

Key No.	Part No.	Description	Key No.	Part No.	Description
1.	RRB-106	Operating instructions	6.	RDE-010	Connection cord
2.	RHL-018	Vinyl bag (for operating instructions)	7.	RHL-019	Vinyl bag (for connection cord)
3.	RHL-031	Vinyl bag (for cassette tapedeck)	8.	REA-021	Head cleaning assembly
4.	RHA-175	Side pad R	9.	RHG-282	Packing case (for KU type)
5.	RHA-174	Side pad L		RHG-281	Packing case (for KC type)

11. EXPLODED VIEWS

11.1 EXTERIOR

Key No.	Part No.	Description
1.		Mechanism assembly
2.		Panel stay (B)
3.	RAC-094	Power knob
4.		Switch joint-bar (D)
5.	RSA-021	Power switch
6.	RWG-103	Control assembly
7.		Bracket
8.		UL cord clamper (B)
9.	RNK-777	Half cover (M)
10.	RAC-108	Function switch knob
11.		Function switch unit
12.		Panel holder
13.		Rubber bush
14.	RXX-251	Front panel assembly
15.		Power knob guide
16.		Lens
17.	RNK-566	Guide L
18.	RNK-608	Guide R
19.	RBA-045	Screw (B)
20.		Nylon washer $4 \phi \times 6 \phi \times 0.2 \mathrm{t}$
21.	REF-014	Steel ball
22.	RBK-132	Spring
23.	RXB-169	Head cover assembly
24.	RAH-285	Escutcheon panel
25.	RNK-731	Escutcheon lens
26.	RBA-044	Screw (A)
27.	RNK-780	Escutcheon (M)
28.	RWR-067	Power supply assembly
29.		Heat sink
30.		Power supply P.C. board
31.	RTT-175	Power transformer (KU)
	RTT-185	Power transformer (KC)
32.		Terminal 1P
33.	REC-272	Strain relief
34.	RXA-905	Foot assembly
35.		Chassis
36.		Bottom plate
37.		Screw M4 $\times 8$
38.		Rear panel
39.	RDG-022	Power cord
40.	RNA. 364	Bonnet
41.	REB-223	Rubber (D)
42.		Switch joint-bar (C)
43.		Switch joint-bar (B)
44.		Switch joint-bar (A)
45.	RAC-091	Push knob (A)

Kay No,	Part No.	Description
46.	RWX-359	Mother assembly
47.	RCS-020	Volume $5 k-B$ (BIAS)
48.		Shield cover
49.		Mother P.C. board
50.	RSG-064	Push switch (A)
51.	RSG-068	Push switch (B)
52.	RKB-014 (RKB-016)	4Pmount pinjack
53.	RWX-360	IC amp assembly
54.	RKN-046	Headphone jack
55.	RKN-044	MIC jack
56.	RWX-361	REC EQ assembly
57.	REB-233	Cover cushion
58.	RAH-287	Half cover panel
59.	RWX-109	Spark killar (UL)
	RWX-150	Spark killar (KC)
60.	REC-250	Capacitor cover D
61.	RAH-286	Function panel
62.	RBA-038	Screw
63.	RBM-004	Wire nut
64.	RRW-112	UL Caution label (A)
65.	RBA-026	Screw

10. PACKING

Parts List

Key No.		Part No.	
			Description
1.	RRB-106		Operating instructions
2.	RHL-018		Vinyl bag (for operating instructions)
3.	RHL-031		Vinyl bag (for cassette tapedeck)
4.	RHA-175		Side pad R
5.	RHA-174	Side pad L	

Key No.		Part No.	
			Description
6.	RDE-010		Connection cord
7.		RHL-019	
Vinyl bag (for connection cord)			
8.		REA-021	
Head cleaning assembly			
9.	RHG-282		Packing case (for KU type)
	RHG-281	Packing case (for KC type)	

11.3 PANEL STAY

- Parts without part number cannot be supplied.

Key No.	Part No.	Description	Key No.	Part No.	Description
1.	RWX-328	Indicator amp assembly	16.	RED-145	Volume mask
2.		P.C. holder	17.	RXX-252	Indicator lens assembly
3.	RSG-066	Switch (E)	18.		Indicator lens
4.	RSG-067	Switch (F)	19.		Indicator panel (M)
5.		Indicator P.C. assembly	20.		Meter lens
6.		Shield cover	21.	RAA-231	BIAS VR knob
7.		Holder (M)	22.	RED-047	Switch mask
8.		Holder (C)	23.	RAA-301	Tape selector knob assembly
9.		Indicator unit	24.	RAA-227	PB VR knob (L) assembly
10.	LD8242	Fluorescent indicator tube	25.	RAA-229	PB VR knob (R) assembly
11.	FIP 5D 8	Fluorescent indicator tube	26.	RED-151	Volume mask
12.		Indicator P.C. board	27.		Panel stay (M)
13.	RAC-093	Push knob (C)	28.		Volume unit
14.	RAA-223	REC VR knob (L) assembly	29.		Shield cover (tape selector)
15.	RAA. 225	REC VR knob (R) assembly	$\begin{aligned} & 30 . \\ & 31 . \end{aligned}$		Shield cover (M) Tape selector assembly

Parts List

Key No.	Part No.	Description
1.		Arm assembly
2.		Arm
3.		Arm
4.	RBH-511	Spring
5.	RSF-022	Microswitch
6.	REC-278	Spacer
7.	RSF-024	Microswitch (B)
8.		Switch bracket
9.		Detector arm
10.	RNK-556	Half holder
11.	RBH-534	Spring
12.	RBH-563	Spring
13.		Brake plate
14.	REB-187	Brake shoe
15.	RBK-119	Head base holder
16.	RBF-013	Steel ball
17.		Head base assembly
18.	REB-153	Stopper
19.	RNK-348	Tape guide
20.	RBH-374	Spring
21.	RNK-535	Adjuster
22.	RXB-005	Pinch-roller arm assembly
23.		Arm (B)
24.	RBH-516	Spring
25.		Arm (A)
26.	RBH-373	Spring
27.		Socket-head screw M2.6 $\times 5 \mathrm{Ni}$
28.	R \times B-255	Sub-head base assembly
29.		Terminal 3¢
30.		Cord clamper
31.	RNK-703	Head cord cover
32.	RLA-994	Pinch-roller arm shaft (L)
33.	RLA-993	Pinch-roller arm shaft (R)
34.	RBF-037	Washer
35.	RXB-093	Bearing assembly
36.		Washer $3 \phi \times 6 \phi \times 0.5 \mathrm{t}$
37.	R×B-058	Supply pulley assembly
38.	REB-314	Sub belt
39.		Terminal (GND)
40.	REB-297	Lamp holder
41.	REL-072	Lamp (B)
42.	RXB-063	Motor pulley Assembly
43.	RXM-050	Motor
44.		Chassis
45.		UL cord clamper (D)
46.		Half holder bracket L assembly
47.	RNK-534	Half holder arm
48.	RBH-503	Spring
49.		Half holder bracket R assembly
50.		Mechanism holder

- Parts without part number cannot be supplied.

Key No.	Part No.	Description
51.		Half detector arm assembly
52.	RBH-524	Spring
53.	RBH-506	Spring
54.		Solenoid lever
55.	RBH-557	Spring
56.		Terminal 4P
57.		6P plug
58.		Screw
59.		Solenoid chassis assembly
60.	REB-270	Capstan belt
61.	RXB-055	Flywheel assembly
62.	RBK-107	Spring
63.		Brake operation lever
64.	RNK-815	Reel cap (B)
65.	R \times - 189	Supply reel assembly (B)
-66.	REB-317	TU belt
67.	RXB-190	Take-up reel assembly (B)
68.	RXA-998	Take-up pulley assembly
-69.	REB-272	Sensing belt
70.		Arm assembly
71.	R8H-502	Spring
72.	R \times B-144	Idler arm full assembly
73.	RNK-561	Idler
74.	RBH-498	Spring
75.	RNK-562	Spring holder
76.		Idier arm assembly
77.		Washer $2.2 \phi \times 5 \phi \times 0.5 t$
78.		Sub-chassis assembly
79.	RXP-056	Solenoid (B)
80.	RXB-064	Motor pulley (B) assembly
81.	RXM-047	Take up motor
82.		Sensing holder
83.		Sensing unit
84.	RBH-564	Spring
85.	RXP-062	Solenoid (A)
86.	RKP-044	Connector (13p)
87.	RBH-507	Spring
88.	W038	Diode
89.	RNF-527	Spacer
90.	RBH-505	Spring
91.	REB-194	Rubber
92.		Friction felt
93.		UL cord clamper (B)

12．SCHEMATIC DIAGRAMS P．C．BOARD PATTERNS AND PARTSLIST

12．1 MISCELLANEOUS PARTS LIST

NOTE：

－When ordering resistors，first convert resistance values into code form as shown in the following examples．
Ex． 1 When there are 2 effective digits（any digit apart from 0），such as 560 ohm and 47 k ohm（tolerance is shown by $J=5 \%$ ，and $K=10 \%$ ）．
$560 \Omega-56 \times 10^{1}-561 \ldots R D^{1 / 4} P S$ 因困 J
$47 \mathrm{k} \Omega-47 \times 10^{3}-473 \ldots R D^{1 / 4} P S$ 困园园 J

1Ω —— 010 ．．．．．．．．．．．．．．．．RS1P回田 K
Ex． 2 When there are 3 effective digits（such as in high precision metal film resistors）．

ASSEMBLIES
Part No．

RWX－359	
RWX－328	
RWR－067	
Indicator assembly	
RWX－360	Power supply assembly
RWG－103	Integrated amplifier assembly

SWITCHES

Part No．	Symbol \＆Description	
RSA－021	S001	Power switch （CT－F950／KC，KU）
RSF－024	S1102	Microswitch B （CASSETTE HALF DETECTOR）
RSF－022	S1103	Microswitch （ERASE PREVENT DETECTOR）

TRANSFORMER

Part No．	Symbol \＆Description	
RTT－175	T001	Power transformer （CT－F950／KU）
RTT－185	T001	Power transformer （CT－F950／KC）

SEMICONDUCTORS

Part No．	Symbol \＆Description
W03B	
D1101，D1 102 Diode	

W03B
D1101，D1102 Diode

OTHERS

Part No．	Symbol \＆Desc	cription
RWX－109	CR001	Spark killer （CT－F950／KU）
RWX－150	CR001	Spark killer （CT－F950／KC）
RXP－062	SL1108	Solenoid A （PINCH SOL．）
RXP－056	SL1 102	Solenoid B （BRAKE SOL．）
REL－072	PL1101	Lamp B（CASSETTE－ LAMP）
RXM－050	Motor	
RXM－047	Take－up motor	
RDG－022	Power cord	

Appearance of Transistors and ICs

2SA733A

2SA934
2SC2060

2SC828
2SC1327

2SC1740LN

2SD686

2SD837

PA4005
μ PD4050C

PD4004

μ PC324C

TC9121P

TA7318P

AN3 70

12.3 SCHEMATIC DIAGRAM

Appearance of Transistors and ICs

2SA733A

2SA934 2SC2060

2SC828
2SC1327

2SC1740LN

2SD686

2 SD837

PA4005
μ PD4050C

PD4004

μ PC324C

TC9121P

TA7318P

AN370

． 5 MOTHER ASSEMBLY（RWX－359）

rts List

SEMBLIES

JILS
t No．
RTF－058
RTF－033
RTF－055
RTF－040
RTD－018

RTF－057
T64－001
APACITORS
rt No．
CEANL 100P 25
CEA 101P 25
CEA 101P 16
CEA 101P 10 CEA 470P 35

CEA 470P 16
CEA 220P 10 CEA 100P 35

CEA 4R7P 35 CEA 010P 50

CEA 010M 50 CEA R47P 50 CEA R33M 50 CEA 220P 35 CEA 330P 16

CEA 100P 16 CEA 4R7M 25NP CQMA 104K 50 CQMA 333K 50 COMA 223K 50

CQMA 183K 50 CQMA 153K 50 CQMA 123K 50 CQMA 103K 50 CQMA 682K 50

Symbol \＆Description

L101，L102	Trap coil
L201，L202	Trap coil
L203，L204	Trap coil
L205，L206	MPX filter brock
L301，L302	Matching transformer
L303，L304	Line coil
T301	OSC coil

Symbol \＆Description
C103，C104
C115，C116，C314，C315，C320，C321 C303
C105，C106 C328

C151，C152，C227，C228
C125，C126
C127，C128，C133，С134，C137，C138，
C159，C160，C203－C206，C209，C210．
C311，C312
C145，C146，C221，C222
C117，C118，C155，C156，C305

C141，C142，C213，C214
C121，C122
C139，C140，C211，C212
C111．C112
C304

C317，C318，C229，C230－C232
C143，C144，C215，C216
C328
C309
C119，C120

C149，C150，C219，C220
C307
C135，C136，C207，C208
C302，C323，C324
C310

Part No
Symbol \＆Description

COMA 822 K 50	C113，C114
CQMA 472K 50	C306，C308
CQMA 332K 50	C225，C226
CQMA 222K 50	C129，C130，C147，C148，C217，C218
CQMA 102K 50	C301，C165，C166
COMA 152K 50	C163，C164
RCE－023	C131．C132
RCE－008	C325，C326
RCE－025	C161，C162
CCDSL 101K 50	C109．C110
CKDYB681K 50	C107，C108
CKDYB 471K 50	C153，C154，C223，C224
CKDYF 473250	C201，C202，C327
CKDYF 103250	C313，C316，C319，C322
CKDYF 108250	C157，C158

Note：When ordering resistors，convert the

RESISTORS

Part No．

C92－857
C92．051

C92－047
C92－402
C81－426

RCP－052
RCP－049
RCP－048
RCS－020
RD $1 / 4$ PM ロロロJ

RD $1 / 4$ PF 221J
RD $1 / 2 \mathrm{PF}$ 122
RS1PF ロロロJ
resistance value into code form，and then rewrite the part no．as before．
Symbol \＆Description
VR101－VR104 Semi－fixed 22K－B
VR105，VR106，VR201，VR202 Semi－fixed 4R7K－B
VR107，VR108 Semi－fixed 100K－B
VR203，VR204 Semi－fixed 3R3K－8
VR205，VR206，VR304，VR305

Semi－fixed	$33 K-B$
Semi－fixed	$4.7 K-B$
Semi－fixed	$330-B$
Semi－fixed	$220-B$
Volume $5 K-B$（BIAS）	

R101－R134，R137－R184，R201－R264，
R301－R317，R319，R321，R322，R324，
R325，R329，R332
R135，R136
R331
R320，R326－R328，R330
SEMICONDUCTORS
Part No．
AN3

2SC1740LN
（2SC1327）
2SC1740LN
（2SC828）
2SC2060－Q
1S2473－T
OTHERS
Part No．

RKB－014
（RKB－016）
RKN－044
RKN－046
RBF－042
RBF－041
Symbol \＆Description

IC101，IC102
IC103，IC104，IC201，IC202
Q101，Q102，Q107－Q110，Q201，Q202
Q103－Q106

0301， 0302
Q303－Q307
D101，D102，D301－D304，D306－D311

Symbol \＆Description

4P mount pinjack

MIC jack
Headphone jack
Ceramic tube
Ceramic tube
12.4 FUNCTION SWITCH ASSEMBLY

Parts List

OTHERS

SWITCHES

Part No.
Symbol \& Description
Part No.
Symbol \& Doscription
RKP-042
RNK-733
Connector socket assembly (12P) RNK. 733 LED holder

SEMICONDUCTORS

Part No.	Symbol \& Description
TLG 206	LED901-LED904
TLR 206	LED905

12.8 INDICATOR ASSEMBLY

Parts List

CAPACITOR

Part No．
Symbol \＆Description
C701
Note：
When ordering resistors，convert the resistance value into code form，and
RESISTORS then rewrite the part no．as before．

Part No．
Symbol \＆Description
RD1／4PM ロロロJ R701－R716，R718，R719，R721，R722， R724，R725
RD $1 / 2$ PF 122 J
R727－R729
RS½PF 민 J
R717，R720，R723，R726

SEMICONDUCTORS

Part No．
Symbol \＆Description

2SA733A Q701
1S2473 D701，D702
PG5531KX LED701－LED704

OTHERS

Part No．	Symbol \＆Description
LD8242	V701 Fluorescent indicator tube（LEVEL）
FIP5D8	V702 Fluorescent indicator tube
RDD -001	Cord（18P）

64
12.6 VOLUME ASSEMBLY

Parts List

Part No.		Symbol \& Description
RCV-056	VR1201 Volume 20k (A) (INPUT)	

12.7 SENSING ASSEMBLY

Parts List

Part No.
Symbol \& Description

TLP 507A
Photo interrupter

IC8OI:TAT318P
IC802: μ PC 324C IC803: μ PD $4050 C$ 1C804: PD4004

S8OI-1~3: METER FUNCTION (AVERAGE, PEAKHOLD, PEAK)
S801-4~6: TIMER REC/PLAY(OFF, REC/PLAY, PLAY)
S8O2-1~5: MEMORY 8 REPEAT (OFF, ENDREPEAT, COUNTERREPEAT, MEMORY PLAY, S802-6 : COUNTER RESET

STOP)

Parts List of Indicator Amplifier Assembly (RWX-328)

SWITCHES AND COIL

Part No.	Symbol \& Description	
RSG-067	S801	Switch F
RSG-066	S802	Switch E
RTD-015	L801	Oscillation coil

CAPACITORS

Part No.	Symbol \& Description
CEA 100P 16	C801, C802
CEA 100P 35	C806
CEA 220P 10	C811, C812
CEA 010P 50	C803, C807, C808
CQMA 273 K 50	C804, C805
CQMA 393K 50	C813
CQMA 472K 50	0810
CCDSL 181K 50	C815, C816

Note: When ordering resistors, convert the

RESISTORS Part No.	resistance value into code form, and then rewrite the part no. as before Symbol \& Description
RCP-039	VR801, VR802 Semi-fixed 3.3K (B)
RDPS ㅁㅁㅣ J	R801, R802, R804-R850, R852-R860
RD $11 / 2$ PF 561J	R803

OTHER
$\frac{\text { Part No. }}{\text { RKP-046 }} \frac{\text { Symbol \& Description }}{\text { Connector 3P }}$
SEMICONDUCTORS

Part No.	Symbol \& Description
TA7318P	IC801
μ PC324C	IC802
μ PD4050C	IC803
PD4004	IC804
2SC1740LN	Q801, Q802, 0804--0807
2SA733A	Q803
152473	D801-D811. D813-D822

12.10 INTEGRATED AMPLIFIER ASSEMBLY (RWX-360)

Parts List CAPACITORS

Part No.
CEA 100P 16
CEA 221P 25
CEA 101P 25
CEA 470P 16
CEA 330P 16
CEA 100P 25
CEA 4R7P 35
CEA 010P 50 CSSA R33M 25 CEA 100P 35

CEANL 100P 16 CEANL R47P 50 COMA 683K 50 CCDSL 101 K 50 CCDSL 220K 50

Symbol \& Description
C1001, C1007, C1021
C1018
C1021
C1006
C1011
C1010
C1009
C1013
C1014
C1015
C1003
C1005
C1017
C1002, C1008, C1016 C1004, C1020

Note: When ordering resistors, convert resistance value into code form, then rewrite the part no. as befi
\qquad Symbol \& Description

RD $1 / 4$ PS \square
R1001-R1015, R1017.R1018

R1001-R1015, R1017, R1018

SEMICONDUCTOR AND OTHER
Part No.
Symbol \& Description
PA. 4001
RKF-015
IC1001
Connector

Mother Ass'y, No. 2 (Lch) Mother Ass'y, No. 5 (R R)

Mother Ass'y No. 1 (Lch) Mother Ass'y No. 4 (Rch)

74

12．11 POWER SUPPLY ASSEMBLY（RWR－067）

Parts List		Part No．	Symbol \＆Description
		S3VC10	D601
FUSE		$\begin{aligned} & \text { W03B } \\ & \text { (S1B01-01) } \end{aligned}$	D602，D606，D607
Part No．	Symbol \＆Description	1 S 2473	D603，D605
REK－063	FU1 Fuse 1．5A	2W02	D604
		S3VC10R	D608
CAPACITORS		02Z6．2A	ZD601，ZD603
CAPACITORS		WZ－145	ZD602
Part No．	Symbol \＆Description	BZ－250	2D604
PartNo．		BZ－240	ZD605
CEA 152P 35	C601	0275．6A	ZD606
CEA 102P 35	C602	（WZ－056）	
CEA 470P 10	C603	BZ－110	ZD607
CEA 101P 35	C604，C618	OTHERS	
CEA 470P 16	C605，C 614	OTHERS	
CEA 221P 16	C 606	Part No．	Symbol \＆Description
CEA 100P 63	C 607		
CEA 102P 50	C 608		
CEA 101P 50	C 609		
CEA 221P 35	C 610		
CEA 221P 25	C 611		
CEA 220P 50	C 612		
CEA 2R2P 50	C 613		
CEA 010P 50	C 615		
CEA 331P 50	C 616		
CEA 470P 35	c 617		
Rote：	When ordering resistors，convert the resistance value into code form，and then．rewrite the part no．as before．		
Part No．	Symbol \＆Description		
RD1／2PSF ロロロ J	R601，R610－R612，R621，R623		
RD1／PS ㅁํㄴ J	R602－R609，R613－R615，R617，R624		
RS1PFロロロJ	R616，R619，R622		
RCN－039	R618 270 2W		
RCN－040	R620 330 2W		
SEMICONDUCTORS			
Part No．	Symbol \＆Description		
2SD234	Q601， 0610		
2SC1740LN	Q602，Q603，0606， 0608		
2SA733A	Q604， 0605		
2SD526	Q607		
2SA934	0609		
2SC1419	Q611－		

Parts List

COILS

Part No．	Symbol \＆Description
RTF． 069	L401，L402 Peaking coil
RTF－070	L403，L404 Peaking coil
CAPACITORS	
Part No．	Symbol \＆Description
CEA 010P 50	C401，C402
COMA 683」50	C411，C412，C415，C416
COMA 563J 50	C407，C408
COMA 393J 50	C417，C418
COMA 333」 50	C409．C410
COMA 273」 50	C405，C406
COMA 223J 50	C413，C414

Note：When ordering resistors，convert the

RESISTORS
Part No
RD $1 / 4 P M=0 \mathrm{~J}$
$R D 1 / 4 P S 103 \mathrm{~J}$
$R D 1 / 4 \mathrm{VS} 103 \mathrm{~J}$ resistance value into code form，and then rewrite the part no．as before．

Symbol \＆Description
R401，R402，R405，R406，R409－R418 R421－R424
R403
R404

SEMICONDUCTORS

Part No．
2SC1740LN

OTHER
Part No．

Symbol \＆Description
Q401－Q408

Symbol \＆Description
Connector

Parts List of Control Assembly (RWG-103)

CAPACITORS

Part No.
CQMA 103K 50
CEA 330P 16
CEA 220P 16
CEA 220P 10
CEA 100P 16

CEA 010P 50
CEA R47P 50
CQMA 102K. 50

Symbol \& Description
C501, C502, C510
C506, C507, C515
C514
C508
C503, C516, C517
C504, C505
C509
C511-C513

TC9121P	IC501
2SC1740LN	Q501, Q503-Q506, Q508, 0509, O514
	Q515, Q523, Q525-Q530
2SA733A	Q502, 0507, Q510, O524
2SD686	Q511-O513
(2SD837)	
2SC2060	Q516-0519, 0522
2SA934	Q520, Q521
1S2473	D501-D523

Part No.
RD½PF ㅁㅁㅣ. RD½PS

RCN-032	R541
RCN-031	R545

RCN-037

SEMICONDUCTORS

Part No.

Wire wound 7.5 7W
Wire wound 3.9 2W
Wire wound 30 2W

Symbol \& Description
R554
R577

R54

Symbol \& Description

C501
,515, Q523, 525,

Note: When ordering resistors, convert the resistance value into code form, and then rewrite the part no. as before.

Part No.
C92-047
RD $1 / 4$ PS

Symbol \& Description
VR501 Semi-fixed 100k-(B)
R501-R540, R542-R544, R546-R552,
R555-R576, R578-R588
12.13 REC EQ ASSEMBLY (RWX-361)

-Power Supply Ass'y, No. 19
-Power Supply Ass'y, No. 15
12. 14 TAPE SELECTOR ASSEMBLY
-
2
2

Parts List

Part No.
Symbol \& Description

RSB-020	S1301	Switch (TAPE)
RCV-064	VR1301	Volume 20K (B)
		(OUTPUT)

CKDYF $473 Z 50$
C1301-C1304
12.15 FUSE ASSEMBLY

13. TROUBLE SHOOTING

CONDITION	CAUSE AND REPAIR
- Fluorescent indicator lamps (level meters and tape counter) do not light up, even though voltage is applied to the filament.	- Defective Q701 (2SA733) in the indicator assembly.
- Level meter segments (see Fig. 13-1) fail to light up even though the numerals and the tape counter are on. Fig. 13-1	- Load a recorded tape or test tape and check the presence of an input signal. - Defective IC801 (TA7318P) or IC802 ($\mu \mathrm{PC} 324$) in the indicator amplifier assembly.
- Only one, or two, columns in the tape counter light up.	- Defect in the parallel vinyl-covered leads connecting the indicator assembly to the indicator amplifier assembly. - Defective IC804 (PD4004) in the indicator amplifier assembly.
- One of the segments in the tape counter digits fails to light up (see Fig. 13-2). Fig. 13-2	Defective soldering of a component in the indicator assembly (if the level meter is operating normally). - Defective IC804 (PD4004) in the indicator amplifier assembly (if the level meter is not operating properly).
- Only one of the level meter segments lights up, or else the segments light up and turn off again rather sporadically.	- Defective IC804 (PD4004).
- The level meter numerals do not light up.	- Defective soldering of component(s) in the indicator assembly. - A break in the parallel vinyl-covered leads connecting the indicator assembly to the indicator amplifier assembly.
- Level meter and tape counter lamps are rather dull.	- Defective Q701 (2SA733) in the indicator assembly.
- Tape counter does not return to 000 when the COUNTER RESET is pressed.	- Defective IC804 (PD4004). - Defective COUNTER RESET push-button.

[^0]: *Manufactured under license from Dolby Laboratories.
 *Dolby and DO are trademarks of Dolby Laboratories.

