

ORDER NO. CRT1055

COMPONENT CAR STEREO COMPACT DISC PLAYER

CONTENTS

1. SPECIFICATIONS 1
2. SAFETY INFORMATION 2
3. NAME OF PARTS AND THEIR FUNCTIONS 3
4. READING THE DISPLAY 3
5. OPERATION 4
6. CONNECTION 4
7. PARTS LOCATION 5
8. DISASSEMBLY 6
9. MECHANISM DESCRIPTION 10
10. CIRCUIT DESCRIPTON 12
11. SCHEMATIC CIRCUIT DIAGRAM 54
12. CONNECTION DIAGRAM 58
13. CHASSIS EXPLODED VIEW 65
14. CD MECHANISM UNIT EXPLODED VIEW 68
15. ELECTRICAL PARTS LIST 71
16. PACKING METHOD 74
17. ADJUSTMENT 75

- CD Player Service Precautions

1. Since this screw protects the mechanism during transport, be sure to affix it when it is transported for repair, etc.

Fig. 1

1. SPECIFICATIONS

General

System . . .Motor vehicle compact disc digital audio system Disc Diameter: 120 mm Thickness: 1.2 mm Maximum playing time: Over 60 minutes (stereo) Linear velocity: $1.2-1.4 \mathrm{~m} / \mathrm{sec}$. Rotation direction: Counterclockwise Signal format Sampling frequency: 44.1 kHz Number of quantization bits: 16 ; linear Transmission bit rate: $4.3218 \mathrm{Mbit} / \mathrm{sec}$.

Modulation system: EFM Error correction system: CIRC Pre-emphasis: $50 / 15 \mu \mathrm{sec}$.
Laser. .Semiconductor laser: wavelength 790 nm
Power requirements . . 14.4 V DC ($10.8-15.6 \mathrm{~V}$ possible)
Power consumption. 8 W
Maximum power consumption. 16 W
Weight. 1.7 kg

Dimensions 180(W) $\times 50$ (H) $\times 163$ (D) mm

Audio

Frequency characteristics $5-20,000 \mathrm{~Hz}(\pm 1 \mathrm{~dB})$
Signal-to-noise ratio $90 \mathrm{~dB}(1 \mathrm{kHz})($ (IEC-A network)
Dynamic range $90 \mathrm{~dB}(1 \mathrm{kHz})$
Wow and flutter Below measurement range
Distortion factor $0.005 \%(1 \mathrm{kHz}, 0 \mathrm{~dB})$
Output voltage $200 \mathrm{mV}(1 \mathrm{kHz}, 0 \mathrm{~dB})$
Number of channels. 2 (stereo)

Note:

Specifications and the design are subject to possible modification without notice due to improvements.

2. SAFETY INFORMATION

1. Safety Precautions for those who Service this Unit.

- Follow the adjustment steps (see pages 78 through 85) in the service manual when servicing this unit. Whe checking or adjusting the emitting power of the laser diode exercise caution in order to get safe, reliable results.

Caution:

1. During repair or tests, minimum distance of 13 cm from the focus lens must be kept.
2. During repair or tests, do not view laser beam for 10 seconds or longer.
3. A "CLASS 1 LASER PRODUCT" label is affixed to the bottom of the player. (Fig. 2)

- Two screws are affixed to the bottom of the unit to secure the mechanism during transport. Be sure to remove these screws before installation of the player. (Fig. 2)

Fig. 2
3. The triangular label is attached to the mechanism unit plate unit (Fig. 3)

Fig. 3

4. Specifications of Laser Diode

Specifications of laser radiation fields to which human access is possible during service.

Wavelength $=$	780 nanometers
Radiant power $=$	55.3 microwatts (Through a circular aperture stop having a diameter of 80 millime- ters)
	0.44 microwatts (Through a circular aperture stop having a diameter of 7 millimeters)

3. NAME OF PARTS AND THEIR FUNCTIONS

(1) Track Number Search Button

Press to search for a specific selection (track number). Each press of the $(+)$ side increases the displayed track number, while pressing the $(-)$ side decreases the number. Holding down either side of this button causes the displayed number to successively change at high speed.

(2) Fast Forward Button

Press to advance the present selection at high speed. Play resumes when the next selection (track number) is reached. Holding down the button causes fast forward to continue even after the next selection is reached.

(3) Reverse Button

Press to reverse the present selection at high speed. Play resumes when the beginning of the present selection (track number) is reached. Holding down the button causes reverse to continue even after the beginning of the present selection is reached.

(4) Disc Insert Slot

Discs are loaded into the unit with the label on the disc facing up. Once a disc is inserted into the disc insert slot, it is automatically set and play begins.

- Turn the cassette deck power switch or the tuner power switch to the OFF position.

(5) Music Repeat Button

Press to repeat the current selection a number of times. Either the release button or the music repeat button can be used to cancel the music repeat operation once it is activated. All selections on a disc are continuously played when the music repeat function is not activated.

4. READING THE DISPLAY

(1) Disc Set Display

Lights when a disc is set in the unit.

(2) Track Display

Indicates the track number of the selection being played. Also shows the total number of tracks included on a disc for approximately five seconds after the disc is loaded into the unit.

(3) Play Time Display

Indicates the elapsed play time of the selection being played. Also shows the total play time for a discs for approximately five seconds after the disc is loaded into the unit.

(6) Track Scan/Memory Button

Press once to play the beginning (approximately 10 seconds) of each selection from the current selection (track scan). Pressing again during track scan records the number of the current selection in memory (scan memory) for playback during memory play.
Track Scan
Press to play the beginning (approximately 10 seconds) of each selection in order. Pressing the release button when the desired selection is found releases track scan and returns to normal play. Track scan is automatically released and normal play resumes when the selection during which track scan was originally selected is reached again.

Scan Memory

Press during play of the beginning (approximately 10 seconds) of a selection to record the selection in memory. Up to eight selections can be stored in memory.

- Up to eight selections can be stored in memory. A beep is heard when the memory button is pressed to indicate a full memory. Storing a selection in memory automatically deletes any selection previously stored.

(7) Eject/Reload Button

Press to eject a disc from the unit. Pressing again reloads the disc into the unit.

(8) Memory Play Button

Press to play the selections stored in the scan memory.

(9) Clear Button

Press with a thin pointed object when the effects of noise on the built-in micro computer make it impossible to turn the power of the unit ON, cause other buttons to become inoperative or results in an abnormal display.

(10) Display
 (11) Release/Play Button

Press to cancel track scan, music repeat, fast forward, and reverse. Also suspends operation during random play, memory play, and play. Pressing again resumes play from the spot where it was originally suspended.

(12) Random Play Button

Press to cause random selection and play from among the track numbers stored in the micro computer.

4 Track Scan Display

Lights when the track scan/memory button is pressed and remains lit while the track scan/memory functions are in operation.

(5) Memory Play Display

Lights when the memory play button is pressed and remains lit while the memory play function is in operation. This indicator will not light and memory play will be impossible when there is nothing stored in memory.

(6) Disc Remain Display

Indicates the total play time remaining on the disc being played.

7 Random Play Display

Lights when the random play button is pressed and remains lit while the random play function is in operation.

8 Music Repeat Display

Lights when the music repeat button is pressed and remains lit while the music repeat function is in operation.

- A built-in function protects the semiconductor laser from damage by automatically suspending play when the ambient temperature of the unit exceeds a certain level. This condition is indicated by 1) being shown on displays 2 and (3) The disc should be ejected and the unit should not be used until the ambient temperature is reduced.
- When a space of a few seconds exists between the selections of the disc being used, 3 will show - Epassed.

5. OPERATION

- Turn the cassette deck power switch or the tuner power switch to the OFF position.

1. Load a disc into the disc insert slot 1 with the label on the disc facing up. Once a disc is inserted into the unit, it is automatically set and play begins. (The total number of selections on the disc and total disc play time will appear on the display for approximately five seconds.)
2. Set the volume, balance, bass and treble to the desired level using the cassette deck controls.

6. CONNECTION

- Before making final connections, make temporary connections then operate the unit to check for any connecting cord problems.
- Refer to the instruction manual for details on connecting the various cords of the deck and main amp then make connections correctly.
- Be sure to correctly connect the memory power supply lead (orange) and main power supply lead (red) as specified. If the connections are made incorrectly or forgotten, this unit will not work at all.
- Don't pass the memory power supply lead through a hole into the engine compartment to connect to the battery. This will damage the lead insulation and cause a very dangerous short.
- If you should encounter more than two lead wires of the same color, when wiring connections, it will be convenient to wire them together, as shown in the following diagram.

Example wiring with component car stereo cassette deck.

Fig. 5
3. Press the release/play button 2 to stop play without ejecting the disc. Pressing the release/play button again will resume play from the point at which it was stopped. Press the eject/reload button 3 to stop play and eject the disc. Pressing the eject/reload button while the disc is still in the ejected position will reload the disc and resume play from the first selection.

- A short period of time will pass from when the disc is loaded to the point at which play begins. This "setting" time is required to allow the unit to begin reading the digital signals on the disc.
- The cassette tape deck and tuner can be used while a disc is in the set position.
- DISC SET 4 is illuminated on the display while a disc is set. Note that attempting to load another disc while one is already set can damage the discs and cause malfunction.
- Never attempt to load two discs at the same time. This can cause serious malfunction of the unit.

Fig. 4

Example wiring with CENTRATE component car stereo cassette deck.

7. PARTS LOCATION

NOTE:

- For your parts Stock Control, the fast moving items are indicated with the marks $\star \star$ and \star
$\star \star$: GENERALLY MOVES FASTER THAN \star.
This classification shall be adjusted by each distributor because it depends on model number, temperature, humidity, etc.
- Parts marked by "()" are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.

Fig. 7

Fig. 8

8. DISASSEMBLY

- Case Removal (Fig. 9)

1. Remove 4 screws, then remove the case.

- Grille Assy Removal (Fig. 10)

1. Remove 2 screws and release 4 catches, then remove the grille assembly.
2. Remove 5 connectors.

Insert a (-) screwdriver and turn it in the arrow direction, then two connector catches come off and the flexible circuit board can be removed.

- Display Unit Removal (Fig. 11)

1. Crush the holder (Fig. 11) by using pliers to allow the circuit board to be lifted.
2. Remove 6 screws, then remove the display unit.

Fig. 11

- Chassis Removal (Fig. 12)

1. Turn the set the other way.
2. Remove 8 screws, then remove the chassis.

Fig. 12

Fig. 10

- Mechanism Unit Removal (Fig. 13)

1. Remove 4 screws.
2. Remove 5 connectors.

Fig. 13-1

- Loading Motor Unit Removal (Fig. 14)

1. Remove the screw ($\mathrm{M} 2.6 \times 4$) at A , then remove the guide and gear unit.
2. Remove 2 screws ($M 2 \times 2.5$) at B, then remove the loading motor unit.

Fig. 14

Fig. 15

- Vibration Proof Rubber (Bush) Removal

 (Fig. 16)1. Remove the collar, then remove 4 screws ($\mathrm{M} 2.6 \times 5$) at F.

* Use a tightener to tighten the screw at F.

2. Remove the carriage mechanism unit.
3. Remove the bushing toward the bottom.

- Spindle Motor Removal (Fig. 18)

1. Lower the pickup unit toward the back. (It can be shifted manually if shaft deviation is performed as shown in Fig. 19.)
2. Remove 3 screws ($\mathrm{M} 2.6 \times 4$) at H, then remove the spindle motor as shown by an arrow.

Fig, 18

- Carriage Mechanism Unit Removal (Fig. 17)

1. Turn the mechanism the other way.
2. Remove 2 screws ($M 2.6 \times 5$) at G, then remove the carriage mechanism unit as shown by an arrow.

* Use a tightener to tighten the screws at G.

Fig. 17

- Pickup Unit Removal (Fig. 19)

1. Turn the mechanism the other way.
2. Remove 2 screws $(\mathrm{M} 2 \times 4)$ at J, then remove the holder shaft.
3. Remove 1 screw ($\mathrm{M} 2 \times 4$) at K , then remove the holder.
4. Remove the pickup unit.

- Carriage Motor Unit Removal (Fig. 20)

1. Remove 2 screws $(M 2 \times 4)$ at L and 1 screw $(M 2 \times 4)$ at M, then remove the carriage motor unit.

Fig. 20

9. MECHANISM DESCRIPTION

1. When a disc is inserted, it is supported at point A, B and
C. At the same time, a lever moves toward the arrow
direction and the DISC switch is opened (Fig. 22).
2. When the disc is pushed further, a PUSH switch is turned
on and the loading motor rotates to start loading (Fig. 22).

3. A lever and plate unit are shifted toward the arrow direction, then the FRONT switch is opened (Fig. 23).
4. When the center of the disc comes to the spindle motor, plate unit movement toward the back is terminated and it is then shifted down by the pins of D and E (Fig. 23).
5. A lever moves further toward the back which widens point A, B and C
(Fig. 23).

6. A lever unit is moved toward the back by pin G the same as the lever. An arm unit presses the spindle motor shaft with spring L because pin H moves in the arrow direction, then a magnet holds the disc. After this, pin J and K become free and the die cast chassis becomes vibraloading motor stops to complete the loading operation (Fig. 24).

7. CIRCUIT DESCRIPTION

- Block Diagram

- Power Supply Application \Rightarrow PLAY

$\longrightarrow \begin{aligned} & \text { TOC read } \\ & \text { Since all servo system rise is performed at }\end{aligned}$
Since all servo system rise is performed at the HOME position, the pick up is located in the disc program area where a signalis
readable. Then the sub-code absolute readable. Then the sub-code absolute address is read and the number of tracks up to recorded TOC (read-in part)are com puted by the pickup shift distance to stan TOC read.
*TOC (Table of Contents)
Data concerning the music No. and mu sical performance time period which is recorded at the disc inner circumference.

- System Outline

Unit control is performed by a system controller (IC701: PD4074D).

The system controller in the display unit controls the $C D$ controller (IC 204: PD8019E) by using a communication line. The CD controller performs all CD player operations such as focus servo, tracking servo, basic play operations, and sequence control for the signal processing LSI group (CX20108, CX23035, etc.) related to search operations.

Normally the system controller provides CD player system external interface as indicated below.

- Key matrix sense and beep control
- Display control
- Loading system mechanism control
- Power supply line monitoring and control such as for ACC, back up, etc.
- High temperature sense and protective operation control
- CENTRATE, LC II interface management

Also, the system controller takes care of $C D$ player functions (search, random play, scan, etc.). For example, in regard to the scan function,

Press the Scan key

A command is sent to IC2O4 to search for the music of the present track No. (TNO).

IC204 responds to a search termination command (indicates pickup was moved to subject track).

A "Play command" is sent to IC204 for mute release and play operation entry.

(During play operation, IC204 sends sequential time data.)

IC701 monitors the sent time data.
When 10 seconds are detected after play start, a search command is sent again to IC204 for the next TNO.

IC701 provides sequential control for IC204 that only performs basic operations as mentioned above. Therefore, this unit is roughly divided into:

- IC701 that controls the entire CD player.
- IC2O4 that controls the pickup system servo.

- Communication Bus

The following provides an explanation of the dedicated communication bus that facilitates data exchange between the system controller (IC701) and the CD controller (IC204). This communication bus consists of 7 lines which are 4 data lines (DO-D3), ACK, STB handshake lines and a bus request (BREQ) line. Data exchange is parallel 4-bit bi directional. ACK, STB handshaking is provided so that data transfer is confirmed. Also, the BREQ line is used to control the timing for data string (play command, search command, etc.) output. Generally, IC204 output is " L " periodic with a 26 ms cycle (Fig. 27).

Ordinary communication processing chart (commands sent from IC701 and responses received from

1) Data format

Data is sent by DO-D3 data lines. The instructions and request data sent by the system controller are called commands and response data sent by the CD controller is called a response.

Command, response code allocation

Command	Code				Response	Contents
	D3	D2	D1	DO		
?	0000				?	Resend request
. . .	0 0 000				- .	
. . .	0				NACK	Not acknowledged
. .	$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$				-.	
STAT	0100				STAT	Mechanism status
- .	$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$				OPER	Operation satus change. When operation is normal.
- .	0				INT	Operation status change. When operation is abnormal.
PARAM	$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$				ACK	Parameter set
STOP	$1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}$				ACK	Stop operation instruction
SET UP	$\begin{array}{llll}1 & 0 & 0 & 1\end{array}$				ACK	Set up operation instruction
PLAY	$\begin{array}{lllll}1 & 0 & 1 & 0\end{array}$				ACK	Play operation instruction
SEARCH	$\begin{array}{llll}1 & 0 & 1 & 1\end{array}$				ACK	Search operation instruction
FF	$\begin{array}{llll}1 & 1 & 0 & 0\end{array}$				ACK	High speed forward operation instruction
REV	$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$				ACK	High speed reverse operation instruction
- .	1	1	1	0	$\cdots \cdot$	
. .	1	1	1	1	\cdots	

ACK: Response signal that indicates acceptance.

Represenative examples of each command and response format are provided as follows. (Also, communication can be performed with other formats.)
[Operation instruction command]([Operation parameter]) \leftrightarrow [Command response] [Asynchronous response] [Operation status data]

This format is used when the system controller provides a certain operation instruction for the CD controller. When the $C D$ controller receives a command, it immediately returns a command response depending on the controller status, and starts mechanism operation at the same time. Although communication is suspended once, the CD controller sends an asynchronous response to the system controller depending on a change in the mechanism operation status, then it sends operation change data. Since operation change data is sent for an operation instruction command, that for an operation instruction command just sent is sent until a new operation instruction command is sent. The operation parameter that suceeds the operation command depends on a different operation command. When it is omitted, operation is prescribed by a previously determined default value or a value set by a parameter set command.
[Status request command] \leftrightarrow [Synchronous response] [Mechanism status data]

When the system controller sends a status request command, the CD controller provides a direct synchronous response instead of a command response and a command response is omitted. In this case, mechanism status data is sent after a synchronous response.
[Parameter set command][Parameter data] \leftrightarrow [Command response]
Format when CD controller parameter is set.
When this command is received, the CD controller returns "ACK" unconditionally as a command response, and at the same time rewrites the internal CD controller parameter.

- STAT command

STAT is a command sent by the system controller as a status send request. The CD controller responds with a synchronous STAT response and sends the following data.

- PARAM command

PARAM, a parameter set comand, sets the following data.

- STOP command

- SETUP command

The SETUP command format depends on the mode set by PARAM

Data(\$)	Operation	Data (\$)	Operation
2	Focus open	9	Carriage FWD
3	Focus close	A	Carriage REV
4	Tracking open	C	PLAY
5	Tracking close	D	FWD jump
6	All servos on	E	REV jump
8	Carriage off		

* As a response format, one equivalent to the STAT response is sent when servo operation has been terminated
- PLAY command

As a response, 12 woad sub-code data is sent continuously to OPER. Also, the response is sent every second because it is sent only with a second change. However, it is sent immediately when the parameter is changed, or in other words when the music or index is changed.

- FWD/REV command

A response is sent after OPER when it changes every 26 ms . When a parameter (TNO, IX, etc.) change occurs, it is sent immediately.

- INT response

An INT response can be accepted with any system controller operation status as an asynchronous response to notify the system controller that the CD controller has entered the STOP mode.

- Time out during carriage operation. Focus cannot be closed.
2 Spindle cannot be locked.
3 Sub-code cannot be read.

- CD Controller (IC204)

The servo IC CX20108 (IC101) and digital processing IC CX23035 (IC201) are controlled by DATA, CLK, XLT, $\overline{\text { XRST }}$ outputted by the CD controller PD8019E (IC204) in which a SENS signal that matches the data content is outputted to IC204. The timing for DATA, CLK, XLT is shown in Fig. 28.

DATA transfer is by 8 bit serial data. This data is latched by the XLT signal which executes the instruction. The XRST signal clears the IC shift register during ACC ON.

The content of data to IC101, 201 is as shown in the table below.

Fig. 28

Communicate to	Kinds (command)	$\frac{\text { Address }}{\text { D7 - D4 }}$	D3	Task			SENS terminal
				D2	D1	DO	
IC101 CX20108	Focus control	0000	FS4 Focus on	FS3 F gain down	$\begin{gathered} \text { FS2 F search } \\ \text { ON } \end{gathered}$	FS1 F search UP	FZC
	Tracking control	0001	Anti shock	Brake on	TG 2	TG 1	AS
					Gain set		
	Tracking mode	0010	Tracking mode		Sled mode		TZC
IC201 CX23035	Sync protection, attenuator control	1010	GSEM	GSEL	WSEL	ATTM	z
	Counter set, lower 4 bits	1011	Tc3	Tc2	Tc1	Tc0	COMPLETE
	Counter set, upper 4 bits	1100	Tc7	Tc6	Tc5	Tc4	COUNT
	CLV control	1101	Div	TB	TP	GAIN	Z
	CLV mode	1110	CLV mode				$\overline{\text { PW } \geqq 64}$

FZC: Focus zero cross, AS: Anti shock, TZC: Tracking zero cross, \mathbf{Z} : High impedance

1) Focus control command

Provides the focus search voltage in order to search for the zero cross point by moving the lens up and down. Outputs the FZC signal (H to L) from the IC101 SENS terminal at the zero cross point to fetch the focus lock timing.

2) Tracking control command

This command controls the tracking gain and brake circuit.

The tracking gain is increased when $T G 1=T G 2=1$.
TG1 changes the high pass compensation time constant by turning the phase compensation selection switch on. TG2 switches the high pass gain. When a large impact is detected in the anti shock circuit, a sound skip is prevented by increasing the tracking gain. Also, during track jump, spot return is prevented by increasing the gain to realize a track jump.

The anti shock circuit consists of a window comparator (in IC101) for checking the tracking error signal magnitude by input from IC101 terminal (19). When the entry of an error signallarger than the window occurs, player mechanical impact is detected and the servo gain is increased to keep the beam on the track. The anti-shock circuit functions
when D3 $=1$. During this command, SENS output expresses AS (Anti Shock). If tracking error input exceeds the window size (large impact), AS = 1 occurs.

If 100 track jump or 10 track jump occurs during access, the brake circuit turns the tracking servo circuit on and off to stop the beam at a desired position quickly. The brake functions when D2 $=1$.

3) Tracking mode command

This command is used to cause a jump pulse and fast forward pulse during access, and tracking servo and carriage servo ON/OFF.

Operation	Tracking mode		Operation	Carriage mode	
	D3	D2		D1	D0
Servo off	0	0	Servo off	0	0
Servo on	0	1	Servo on	0	1
FWD jump	1	0	Fast FWD	1	0
REV jump	1	1	Fast REV	1	1

Command Code
4) Sync protection, attenuator control command

D3	D2		D1		D0		
GSEM	GSEL	Number of interpolated frames	WSEL	Window width (clock)	ATTM	MUTG terminal (pin 19)	Attenuation (dB)
0	0	2	0	± 3	0	0	0
0	1	4	1	± 7	0	1	$-\infty$
1	0	8			1	0	-12
1	1	13			1	1	-12

Command Code

- Sync protection (D3-D1)

Although a data pattern (3T-11T) the same as a frame sync signal (24T) does not exist during recording, sometimes the same pattern is detected in data due to the influence of dropout and jitter. Also, on the other hand, since an original frame sync signal is not detected sometimes, protection and interpolation as well as detection are necessary.

Only the edge of the EFM signal latched by PLCK is input as " 1 " and the other part is input to the 23 bit shift register after conversion to " O ' to detect a frame sync signal.

A window is provided to protect a frame sync signal, and the same pattern outside the window is eliminated. When a frame sync signal does not exist in the window, interpolation is performed by a signal generated by the 588 octal counter ($4.3218 \mathrm{MHz} / 588=7.35 \mathrm{kHz}$). A 4 bit counter is provided that counts the number of interpolated frames. When this value reaches the number of frames selected by GSEL, GSEM, the window is ignored and the 4 bit counter is reset when the next frame sync signal occurs during which GTOP (pin 27) becomes " H ". Also, the GFS terminal (pin 28) becomes " H " while the frame sync signal generated
by the 588 octal counter for interpolation is synchronized with the frame sync signal from the disc.

The write request signal (WREQ) and timing such as the write frame clock (WFCK) are generated based on the protected and iterpolated frame sync signal.

- Attenuator (DO)

A signal appears at the MUTG terminal (pin 19) from IC204 (CD controller). Muting or -12 dB attenuation is executed by a 2 bit signal.

5) Counter set (lower bit, upper 4 bits)

During access, a track count pulse enters the CNIN terminal (pin 17) from the IC101 CSET terminal (pin 6). This command presets the counter preset value that counts the pulse.
6) CLV control command and CLV mode command

DiV	D3	0	RFCK/4 and WFCK/4	Phase comparison frequency during CLV-P mode
		1	RFCK/8 and WFCK/8	
TB	D2	0	RFCK/32	Bottom hold cycle during CLV-S, CLV-H mode.
		1	RFCK/16	
TP	D1	0	RFCK/4	Peak hold cycle during CLV-S mode.
		1	RFCK/2	
GAIN	DO	0	$-12 \mathrm{~dB}$	MDP terminal (pin 3) gain during CLV-S, CLV-H mode.
		1	OdB	

CLV Control Command

Mode	D3 - D0	MDP (pin 3)	MDS (pin4)	FSW (pin 1)	MON(pin 2)
STOP	0000	L	Z	L	L
Kick	1000	H	Z	L	H
BRAKE	1010	L	z	L	H
CLV-S	1110	CLV-S	z	L	H
CLV-H	1100	CLV-H	z	L	H
CLV-P	1111	CLV-P	CLV-P	Z	H
CLV-A	0110	CLV-S or CLV-P	Z or CLV-P	L or Z	H

CLV Mode Command
Z: High impedance

These signal are commands that concern the CLV servo. IC204 (CD Controller) selects each CLV mode and sends a command to IC201. IC201 controls spindle motor rotation by the following output. IC201 output is by the MDP terminal that controls the speed and phase synchronization, the MDS terminal that controls speed synchronization, the FSW terminal that performs filter constant switching, and the MON terminal that controls motor on/off. A signal that matches each motor is applied to the spindle control circuit for these terminals.

Usually each control signal outputted from IC201 during play has a modulated pulse width. These signals are applied to the spindle servo circuit (IC203) before application to the PWM driver (IC104) to stabilize operation. The spindle servo circuit consists of a low pass filter with IC203, R206, 207, C205, 204 which converts a signal (pulse) to DC. D201-203 are connected to IC203 output through R210. This circuit is a limiter that prevents excessive motor current flow when a signal becomes abnormally large and is set so that the PWM driver (IC104) output duty range does not become 100%. When IC203 output becomes a large positive value,

D202, 203 are turned on and are fixed at +2.5 to 2.7 V . When it becomes a large negative value, D201 is turned on and is fixed at -0.5 to -0.7 V .

- STOP mode

During this mode, the $\pm 5 \mathrm{~V}$ D/D convertor (IC601) operates and the spindle motor does not rotate (during EJECT, etc.). In regard to each IC201 output, MDP = " L " , MDS $=$ "'Z"', FSW $=$ "'L', and $M O N=" L '$. IC203 pin 1 output is OV (SPDD). Also, the MON pin is connected to IC104 pin 15. When this terminal becomes " H ", the spindle driver operates. When it is " L ", no output occurs (to prevent driver operation by the IC203 offset voltage).

- KICK mode

In this mode, when the spindle motor shifts from a stop status to an operation status, it is forced to operated (forward rotation) so that PLL pull in can be easily performed Pin 1 (SPDD) of IC203 becomes +4 or +5 V which is applied to IC104. Since MON $=$ " $\mathrm{H}^{\prime \prime}$, IC104 operates.

- BRAKE mode

In this mode, when motor stop is required during spindle motor forward rotation, a voltage reverse to the forward rotation is applied to the motor to reduce motor rotation rapidly to stop the motor quickly. IC203 pin 1 (SPDD) becomes -3 or -4 V . After low speed motor rotation is detected by the signal from IC201 pin 18 SENS terminal, IC204 stops sending the BRAKE command.

- CLV-S mode (S:SPEED)

Rough servo mode used when EFM-PLL circuit lock is released during rotation start, track jump, etc.

- CLV-H mode

Used when the RF signal has an intermittent status such as during high speed search.

- CLV-P mode

Ordinary play mode used during PLL lock.

- CLV-A mode

When the CLV-P mode becomes unstable due to vibration and disc scratches, or when track jump (several tracks) occurs, a switch is made to the CLV-S mode, then an automatic switch is made to the CLV-P mode when disc rotation and PLL are stabilized.

Fig. 29

Fig. 29 Spindle motor control mode selection

Fig. 30 Spindle motor, control mode switching

- RF Amplifier (IC1:CX20109)

Fig. 31

A circuit that processes the 3 spot pickup output signal and provides a signal to the next step, servo section, demodulator section and servo controller.

1) $R F$ amplifier

Photo diode current input to pin 5, 6 is converted to $\mathrm{I}-\mathrm{V}$ by the RF I-V amplifier. Also, summation by the RF summing amplifier $(A+B+C+D)$ is output to pin 3 .

2) EFM comparator

The RF binary signal input by pin 2 is output to pin 20 as an EFM signal. Since asymmetry that occurs due to uneven disc manufacture cannot be removed just by AC coupling, the 50% probability of a 1,0 binary EFM signal is used to control the reference voltage of the EFM compa-

rator.

3) Focus error amplifier

The RFI-V amplifier (1) output ($\mathrm{A}+\mathrm{C}$) and RFI-V amplifier (2) output ($B+D$) difference is provided as focus error signal $(A+C-B-D)$ output from pin 16.

4) Tracking error amplifier

Side spot photo diode current input to pin 8, 11 is converted to I-V by the E, FI-V amplifier. Also, the E, FI-V amplifier difference used by the tracking error amplifier is provided as tracking error signal ($E-F$) output from pin 17.

5) Focus OK circuit

This circuit provides the timing window which turns the focus servo on from a focus search status. In regard to the Focus OK signal (an RF comporator signal), when pin 3 becomes more than 0.4 V , pin 1 becomes " H ".

6) Mirror circuit

Peak and bottom hold occurs after the pin 2 RFI signal is amplified. A DC reproduced envelope signal is obtained by differential amplification of the peak/bottom hold signals. This signal is compared to a signal in which $2 / 3$ of the peak value is peak held with a large time constant to obtain mirror output. Since the mirror signal becomes " L " on a disc track and " H " between tracks (mirror part), the track difference is detected when the pickup crosses a track. Also, " H " output occurs during defect detection.

- D/A Convertor (IC301) and Integrator (IC302)

IC301 is used to convert 16 bit data to a current signal. IC301 receives each signal (DATA, LRCK, WDCK, BCLK) from IC201 to extract data. Current (I OUT L, R) output occurs from count start until the count becomes zero. In regard to IC302 operation, current output from IC301 charges condensor $C 310,311$ connected between the $(-)$ input terminal (pin 6,2) and the output terminal (pin 7, 1). Then voltage that matches this is outputted from IC302 (pin $7,1)$ as current conversion to voltage.

When current from IC301 stops, IC302 output holds the voltage.

However, since new data entry is continuous, the hold voltage must return to 0 V . Therefore, C310, 311 are discharged by Q301, 302 before new data is extracted. In regard to discharge timing, it is provided as $D C L, D C R$ output by IC301. The output of IC302 varys between OV and 4 V (Fig. 32).

It is as shown in Fig. 32 during non-signal $(-\infty d B)$
reproduction. Audio signal operation is with a 2 V offset.

Fig. 33

Note (Only L ch)

OV During OdB signal reproduction

Fig. 34

- Deglitch (IC303) and Sample Hold (IC304) Circuit the Following Gives Description for L-ch Only.
IC302 signal output is connected to the IC304 (-) input terminal through R306 and the IC303 switch. In regard to the IC303 switch, pin 15 and 1 are turned on by the LRCK " $\mathrm{H}^{\prime \prime}$ section output from IC201. Pin 15 and 2 are turned on by the "L"' section, the signal from R306 drops to GND and the IC304 $(-)$ input terminal is opened.

An approximate circuit when IC303 pin 15 and 1 are turned on is as shown in Fig. 35. At that time, the circuit functions as an ordinary amplifier.

Fig. 35

IC302 output voltage is increased by this amplifier gain to become IC3O4 output (180° phase deviation).

Next, the IC303 switch becomes as shown in Fig. 35 when pin 15 and 2 become on.

IC302 is separated from IC304. However, since C318 is charged by the previous output voltage, the voltage is held between this.

Also, IC 302 output is offset +2 V , negative voltage is applied by R308, R310 and C314 so that the offset is cancelled. IC304 functions as an adder with OV output. There is a $+1-$ audio signal shift centered on OV.

Fig. 36

Fig. 37

IC302 output

IC304 output

IC304
output (actual)

There is a difference between the hold voltage and previous voltage influenced by a slight discharge of C318 and the IC offset voltage.

Fig. 38

- Low Pass Filter (IC305, 306) (LPF)

Since there is excessive spectral density in IC304 output, the frequency component in areas other than the audible zone is eliminated by an LPF provided with 6 dB gain as well as an internal deemphasis circuit so that deemphasis ON/OFF can be controlled by applying +5 V or -5 V to pin 3. In regard to deemphasis ON/OFF, lead-out is performed by a disc sub-code, and signal output is by IC204 (CD controller). However, since IC204 output is 0 V and 5 V , the IC303 switch is controlled through Q307, then the switch selected voltage is applied to pin 3 of IC305. (Since IC305 pin 3 requires current, the $\mathbf{Q} 307$ collector cannot be directly connected.)

- Isolator (IC307) and Mute Circuit

The isolator is used to cancel noise that occurs on the GND line of the connection cable when it is connected to a cassette deck. GIN is the unit ground and GOUT is connected so that it drops to the GND level of the cassette deck.

When a CDX-2 audio signal is checked, this is performed by shorting GIN and GOUT or by shorting DIN cord pin 3 and the external side (wire mesh).

- PLL Circuit

Fig. 39

This circuit is used to extract the EFM signal reproduction clock. The phase of the signal produced by the oscillation section and that of the EFM signal are compared, then the IC201 (PDO) pin 11 output result is amplified for application to the varicap (D204) anode. IC2O3 output is usually set for -0.5 V during play. (Measured by a tester and millivolt meter. When it is measured by an oscilloscope, the voltage is seldom set because of overlapping high pass noise.)

When oscillation circuit frequency is high, the output is high ($-0.5 \mathrm{~V} \rightarrow 0 \mathrm{~V} \rightarrow+2 \mathrm{~V}$) and when it is low, the output is low $(-0.5 \mathrm{~V} \rightarrow-3 \mathrm{~V})$. The oscillation frequency is usual-
ly 8.643 MHz during play. However, if a measuring instrument is directly connected to the oscillation section, the circuit becomes unstable. Therefore precautions should be taken.

Also, PLL circuit lock or non-lock can be confirmed by IC201 pin 28 (GFS). When it is " H ", a lock status occurs and when it is " L ", a non-lock status occurs. When PL.L lock does not occur, IC203 output is in a range from 0 to -1 V .

- Key Scan

Positive pulse sequential output occurs from IC701 (PD4074D) pin 35-37 (KS1-KS3) with the timing shown in Fig. 40 when " L " voltage is applied to IC701 pin 2 (VSENSE).

Data is read from IC701 pin 18-21 (KDO-KD3) with " H " key scan timing which identifies a key that was pressed. When no key is pressed, usually pins 18-21 are all "L".

- Display

The FL driver is built into IC701, which provides a direct FL display.

IC701 output is provided by the 9 grid output timing of pins $42-50$ and the 8 segment output timing of pins $27-34$. Also, since $V-(-30 V)$ is applied to pin 51 , and pins $42-50$ and $27-34$ are pulled down to -30 V , an output swing from -30 V to +5 V can be obtained, and FL is lit with grid and " H " segment timing. Aiso, -22.5 V biased with 1.8 Vrms AC is applied to the FL filament.

- AUX control circuit

When voltage (12 V) is applied to the external control input DIS Bline, Q704 is turned on and IC701 pin 6 becomes " L " which stops all operations until 0704 is turned off and

- Search Mode

In regard to the search sequence, three steps (cross count search, step search, cueing step) are performed by a combination that depends on the situation.

- Cross count search (Fig. 41)

Computation of the shift direction and number of tracks is based on the present address and subject address to be searched.

When a command is sent to IC101 for tracking open, spindle CLV-H mode entry and the carriage voltage shifts toward a desired direction, carriage feed is by IC105 (carriage driver). Cross pulse output occurs from IC101 CNT (pin 6) every time one track is crossed and is sent to IC201. Next 1/256 frequency divided pulse output occurs from SENS (pin 18) of IC201 which is counted by IC204 (CD controller). When a prescribed track is crossed, reverse carriage drive occurs to apply a brake and to stop the pickup. (Since

Fig. 40
pin 6 becomes " H " again. At that time, IC701 pin 54 becomes " L ", Q707, 706 become off and the $A U X+B$ output becomes " L ".
$A U X+B$ output indicates unit operation. When the player is operational, it is on together with 0706,707 which provide $A C C+B$ output. However, when independent player operation stops by an external operation stop command or by disc eject, "L" output occurs from IC701 pin 54, and Q706, 707 become off which stops AUX + B output.

The ILL line is a control line that lights night illumination by synchronizing with external units which are directly connected to the illumination circuit. When illumination is lit by the ILL line, IC701 pin 5 becomes " H " which reduces the display scan duty and performs dirmer operation.
cross count search feed is with 256 track units, the fraction is shifted by a 128 track jump and multi jump.)

After braking is terminated, tracking close and tracking brake on occur and the spindle motor is changed to the CLV-A mode. Next, after 100 ms , tracking brake off and carriage close occur and the present address is read in again. The number of tracks that are sent is computed again based on this address and the subject address. This operation is repeated until a subject address is reached. When a subject address is reached, shift to the final cueing step occurs. (In the last address search, a cueing step is not performed which terminates the search.)

The cross count search mentioned above can only be used when a subject address is known which is restricted to TOC data use and during search to the last address memory location. For a case other than that mentioned above, a step search (mentioned below) is performed.

Fig. 41 Cross count search (When the target address is known)

- Step search (Fig. 42)

The basic pickup shift method and brake output method are the same as that for cross count search. Step search is performed when a subject address is unknown. Since the number of tracks up to the subject address cannot be computed, a certain value is set and the target is reached step by step.

First, the number of tracks is set as $768(256 \times 3)$ to shift the pickup, then the address is checked. The pickup is shifted by 768 tracks each time by repeating this until the target is passed. When the target is passed, the pickup shift is reduced to $1 / 2$ that of the original shift, then the pickup is shifted again by reversing the shift direction. This procedure is repeated by reducing the shift to $1 / 2$ that of the previous shift every time the target is passed and by reversing the shift direction. After this, a shift is made to the cueing step.

- Cueing step

The spindle motor quartz servo is out of sync because the pickup was rapidly shifted in a radial disc direction due to cross count search and step search. Therefore it is necessary to terminate the search operation before the original subject address and shift to the play mode because a quartz servo pull in margin must be obtained and mute release timing must be checked.

Also, in regard to cross count search, since the reliability precision of data recorded on TOC is only 1 second even if pickup shift precision is improved, it is necessary to perform a fine adjustment of the pickup position when it shifts to the play mode. Therefore, when a subject address is reached, a 3 -track jump back is performed during play. If INDEX $=0$ exists, MUTE is released 1 second before the subject address to shift to play, and if INDEX $=0$ does not exist, MUTE is released at the subject address.

Fig. 42 Step search (When distance to target address is unknown)

Fig. 43 Track, count sequence

- Protective operation during search

If the pickup jumps to the mirror face of the disc while it is being shifted, erroneous operation might occur. Therefore, it is necessary to provide quick pickup return to the inner circumference area where data is recorded. To accomplish this with IC204, the MIRR signal is checked with 1 ms intervals while pickup shift occurs. When MIRR $=$ "' $\mathrm{H}^{\prime \prime}$ continues for 15 ms , the projection of the pickup onto the mirror face is judged, the pickup shift direction is reversed, and a 100 track cross pulse count occurs to confirm that it has returned to the data face. Next, pickup shift stops, address read in occurs and and search continues. When the count is not terminated after 1 second has passed, it shifts to the STOP mode by judging that the servo system is abnormal, then it shifts to the set up mode again.

Also, when search cannot be performed after 10 seconds have passed due to an abnormality, stop occurs and the disc is ejected.

- Play Mode

The mode used for ordinary music playback. When no abnormality exists, active operation is not performed but monitoring of each part is performed in which the represenative pin status is as follows.

$$
\begin{aligned}
& \text { IC204 } \\
& \text { Pin } 21 \text { AMUTE "L'" } \\
& \text { Pin } 22 \text { XRST ""H" } \\
& \text { Pin } 31 \text { MUTG "'L" } \\
& \text { Pin } 2 \overline{\text { CBRAKE " }}{ }^{\prime} H^{\prime \prime}
\end{aligned}
$$

In regard to monitoring, the address of the reproduced location obtained by the FOK signal, GFS signal and the sub code is monitored once every 26 ms . Also, carriage servo OPEN/CLOSE and emphasis ON/OFF switching is performed. The FOK signal indicates focus or out of focus to detect an abnormal focus servo system. If the FOK signal is "L" for 100 ms , it is judged that the focus servo system is abnormal, then it shifts to the STOP mode.

The GFS signal indicates spindle PLL circuit lock or no lock to detect an abnormal spindle system. IF the GFS signal is " L " for more than 2 seconds, it is judged that the spindle system is abnormal, then it shifts to the STOP mode.

When a sound jump occurs during play reproduction due to a sudden shock, the pickup can be returned to an address that continues to the address just before the sound jump occured so that reproduction can continue and abnormal

- Address read out by a sub code

In regard to sub code Q-channel demodulation, SCOR, WFCK, SUBQ signal output by the signal processing IC (IC201) is read out by IC204 to perform a CRC check.

SCOR is a synchronous 98 bit 1-frame sub code signal while WFCK is a serial clock for the 98 bit sub code, and SUBQ is sub code Q channel control data. Fig. 44 shows the timing for these signals.

Fig. 44 Sub code read out timing
music reproduction can be performed. In regard to reproduction address monitoring, the reference address to be read out next is internally computed based on the reproduction position address that was read during play. When the address is read out next, the internally generated address is compared to the address that was actually read out. As a result, if a difference of more than 1 second exists 5 times continuously, it is judged that sound jump occurred due to some reason, and the reference address is searched as a target address.

To operate the function for sound jump return by monitoring the address of the reproduction location, it is necessary for the sub-code to be read correctly. Therefore, the sub code is checked during play to see if it can be read or not. When it cannot be read 16 times continuously, a shift is made to the STOP mode.

The purpose of carriage servo OPEN/CLOSE selection is to conserve power. When the pickup lens is near the center, servo open occurs and when it deviates from the center, servo close occurs which moves the carriage to move the lens relatively toward the center against the pickup.

Emphasis ON/OFF selection is performed to change the frequency characteristics of the reproduction system by matching the music emphasis ON/OFF during reproduction which is switched according to sub code data that was read in.

As evident in this figure, $S C O R=H$ wait occurs and SUBQ data is read in with 96 bits at the WFCK rising edge at the frame sync point, then a CRC check is performed and the sub code is fetched. Since 1 cycle of WFCK is $136 \mu \mathrm{~s}$, and the sub code consists of 98 bit data including the SCOR sync pattern, about 13.3 ms is necessary for a one time fetch of the sub code.

Fig. 45 Serial data output timing

- FF, REV Mode

A fast feed mode. In the FF mode, "sub code read once as a $2-7$ track jump' ' is repeated toward the outer circumference, and in the REV mode, it is repeated toward the inner circumference. In regard to the number of tracks, 7 tracks are provided on the inner circumference and 2 tracks are provided on the extreme outer circumference so that the fast feed speed becomes constant at both the outer and inner circumference. When the FF mode exists at the extreme outer circumference, it shifts to the Play mode by a return to the extreme inner surface even if the REV mode exists. Also, when TR and index changes occur in the FF, REV mode, a shift to the Play mode occurs at this point.

- Protective Operation

1) When a disc is pulled out during loading and the disc switch is closed, the eject operation occurs.
2) When the REAR switch is not closed 6 seconds after loading has started, the eject operation occurs.
3) When the servo system has trouble and does not recover after 15 seconds have passed, the eject operation occurs.
4) When an operation does not terminate within 7.5 seconds after the eject (loading) operation has started, the loading (eject) operation occurs.
5) When section 4 operation occurs 4 times continuously, the mechanism enters a stop status. If the eject key is pressed during this status, the eject operation starts.
6) When loading is performed by inserting a new disc to enter the set up mode, if servo close has not occurred, focus cannot be performed or tracking cannot be closed, it shifts to the eject operation after finding that the back of the disc is being read. Since disc reload is not accepted in this case, when loading is performed again, it must be performed after removing the disc once.
7) When the focus shifts and the servo system has trouble such as spindle miss lock, if the servo system does not recover to a normal status after 15 seconds have passed, the disc is ejected by a judgement that continuous vibration is applied to the set.
8) If the status does not change after 10 seconds have passed when a carriage shift is attempted such as when the carriage mechanism does not move or search does not occur, the disc is ejected by a judgement that the carriage mechanism has trouble.
9) When data cannot be exchanged continuously 3 times during communication, the disc is ejected by a judgement that a communication error has occurred.
10) When the temperature detection circuit detects a high temperature and makes IC701 pin 7 (TEMP) low, "HH HHHH" is displayed in a high temperature detection protective operation which turns the DC/DC converter (IC601) off to enter a release status. When $\overline{\text { TEMP }}$ returns to a HIGH status, play is reopened at the address just before release.

- ICs and Transistors

2SD1226M

2SB822F

UN2211

2SC3074

UN2111

Chip Transistor

Part No.		Indication (Type No., hFE)
2SD1048-X6	X6	
2SD1048-X7	X7	
2SD1048-X8	X8	
2SD601-YQ	YQ	
2SD601-YR	YR	
2SC2712-LG	LG	Type No.
2SC2712-LY	LY	
2SK508-K52	K52	
2SK508-K53	K53	

- Power Supply Assy

iC601: KHA803

- Main Assy

IC303: TC4053BF

TC4053BF is a 2 channel $\times 3$ multiplexer that enables an analog signal, digital signal selection and combination.
The corresponding switch of each channel is turned on by a control terminal digital signal.

Truth Table for TC4053 BF

Control input				"ON" channel
INH	C	B	A	
L	L	L	L	$0 X, 0 Y, 0 Z$
L	L	L	H	$1 X, 0 Y, 0 Z$
L	L	H	L	$0 X, 1 Y, 0 Z$
L	L	H	H	$1 X, 1 Y, 0 Z$
L	H	L	L	$0 X, 0 Y, 1 Z$
L	H	L	H	$1 X, 0 Y, 1 Z$
L	H	H	L	$0 X, 1 Y, 1 Z$
L	H	H	H	$1 X, 1 Y, 1 Z$

IC305, 306: KHA210A
IC102, 103, 203, 307: M5218FP

IC302, 304: M5221FP(NJM072M)

IC401: M54546L

IR3C05 Terminal Function

Laser diode constant light output drive IC

Pin No.	Pin name	I/O	Function and operation
1	NC		
2	OUT	Output	Output
3	GND		Ground
4	IM	Input	Monitor input
5	VEE		$(-)$ power supply
6	NC		
7	NC		Input
8	VIN	Control input (ON/OFF), thermal shutoff	
9	SO	Output	Operation signal output. "H" during operation, "L" during stop.
10	CP		Phase compensation
11	VCC1		Control (+) power supply 12
VCC2		Output (+) power supply	

IC104, 105: PA3021A

PA3021A Terminal Functions

PWM driver

Pin No.	Pin name	I/O	Function and operation
1	VCC1		ACC power supply
2	BYPASS		IC reference voltage ripple filter condensor connection terminal
3	MOUT+	Output	Motor driver positive output terminal
4	MOUT-	Output	Motor driver negative output terminal
5	AOUT+	Output	Actuator driver positive output terminal
6	AOUT-	Output	Actuator driver negative output terminal
7	DGND		Power step GND terminal
8	VCC2		+5V power supply
9	Vref	Output	IC stabilizing supply output terminal
10	MIN	Input	Actuator system analog signal input terminal
11	TC		Motor system analog signal input terminal
12	CONT	Chopping waveform condensor connection terminal	
13	BRAKE	Input	Motor system operation, non-operation (STOP) selection terminal. Active "L".
14		Circuit operation status, standby status selection terminal. Active "H". 15	

IC's marked by * are MOS type.
Be careful in handling them because they are very liable to be damaged by electrostatic induction.

PD8019E Terminal Function

CD controller

Pin No.	Pin name	1/0	Function and operation
1	NC		
2	CBRAKE	Output	Carriage motor brake terminal. N-ch open drain with pull up. "L': Brake ON.
3	NC		
4	OSCO	Input	Clock oscillation terminal. 4 MHz
5	OSC1	Output	Clock oscillation terminal
6	RESET	Input	ICreset terminal. N-ch open drain with pull up. "L": Reset ON. "H" = Reset OFF.
7	NC		
8	NC		
9	MIRR	Input	Mirror signal input terminal. Input port with latch. " H ": Mirror face, between tracks.
10	TEST	Input	Normal mode/chip check mode selection terminal. Input port with latch.
11	FOK	Input	FOCUS OK signal input termianl. Input port with latch, "H": Focus OK
12	DIRC	Output	Single jump control terminal. N-ch open drain with pull up.
13	CLK	Output	Serial data transmission clock output. N-ch open drain with pull up.
14	DATA	Output	Serial data output. N-ch open drain with pull up. Controls CX20108 and CX23035.
15	SI	Input	Chip checking command input terminal. N-ch open drain with pull up.
16	VSS		GND
17	NC		
18	SENS	Input	Sense signal input terminal. N-ch open drain with pull up.
19	SENS	Input	Sense signal input terminal. N-ch open drain with pull up.
20	$\overline{\text { XLT }}$	Output	Serial data latch pulse. N-ch open drain with pull up.
21	AMUTE	Output	Audio signal mute. N-ch open drain with pull up.
22	$\overline{\text { XRST }}$	Output	Reset terminal. N-ch open drain with pull up. Resets the shift registers, CX20108, CX23035.
23	EMPH	Output	Emphasis ON/OFF selection terminal. N-ch open drain with pull up. " H ": Emphasis ON.
24	C 2 FL	Input	Error correction NG monitor input terminal. N-ch open drain with pull up.
25	RAOV	Input	Jitter extraction RAM overflow. N-ch open drain with pull up.
26	GFS	Input	Spindle lock detection. N -ch open drain with pull up. "H" during spindle lock.
27	WFCK	Input	Sub code read out clock. N-ch open drain with pull up.
28	SCOR	Input	Sub code sync. N-ch open drain with pull up.
29	SUBQ	Input	Sub code data. N -ch open drain with pull up.
30	NC		
31	MUTG	Output	Signal processing mute. N -ch open drain with pull up.
32-34	NC		
35-38	DB0 - DB3	1/0	Communication data bus. N-ch open drain with pull up.
39	VDD		Power supply terminal. +5 V

Pin No.	Pin name	1/0	Function and operation
40	BREQ	Input/Output	Communication control line. N -ch open drain with pull up. - Data link control. Communication bus is enabled by " L " status entry from an " H " status. At the same time, the communication mode is determined by the ACK output level. - Handshake control When a data string is sent, "L" output occurs simulaneously with first data sending, and " H " output occurs with last data sending to indicate data string termination.
41	STB	Input	Communication control line - Handshake control. N -ch open drain with pull up. Communication direction (PD4074D \rightarrow PD8019E) Indicates that PD4074D data output at the rise of this signal is effective. Communication direction (PD8019E \rightarrow PD4074D) Incicates that data output at the rise of this signal was accepted by PD4074D.
42	ACK	Output	Communication control line. N-ch open drain with pull up. - Data link control The communication mode is determined by the level of this signal. - Handshake control Communication direction (PD4074D \rightarrow PD8019E) Outputs " H ." which indicates that data output by PD4074D was accepted. Communication direction (PD8019E \rightarrow PD4074D) Outputs " L " which indicates that data output for PD4074D is effective.
43	NC		
44	$\overline{\text { HOME }}$	Input	HOME switch detection terminal. N-ch open drain with pull up. Terminal that determines the pickup home position. Home position: Location where this terminal changes from " L " to " H ".

* IC101: CX20108

CX20108 Terminal Functions

Focus, tracking, carriage servo IC

Pin No.	Pin name	1/0	Function and operation
1	TG2	Output	Tracking amplifier gain selection terminal. Becomes open or GND level.
2	TA+	Input	Amp 2 (tracking amp) non-inverted input. Tracking error signal input.
3	TEO	Output	Amp 4 (tracking amp) output. Tracking error signal output.
4	TE-	Input	Amp 4 (tracking amp) inverted input.
5	SENSE	Output	Outputs an IC status that corresponds to the DATA address. (Changes with addres content of internal serial resgister.)
6	C OUT	Output	Track number counting signal output during high speed access.
7	$\overline{\text { XRST }}$	Input	Clears all internal registers when " L ".
8	DATA	Input	Serial data input from CD controller (IC204). Inputted by LSB. DO-D7.
9	$\overline{\text { XLT }}$	Input	DATA latch (The content of the internal serial shift register is transferred to a latch that was address-decoded.) Transferred with "L". Since it is not an edge trigger, it is necessary to return it to H after execution.
10	CLK	Input	DATA transfer clock. Data transferred at the trailing edge.
11	MIRR	Input	Mirror signal input from RF amplifier.
12	TZC	Input	Tracking zero cross. Tracking error signal is inputted with a C coupler. Although the time constant is determined by the 1 track jump situation, it is usually about 2 kHz .
13	TE+	Input	Tracking error signal input.
14	ISET		Current value setting that determines the focus search voltage, tracking jump voltage and the carriage feed voltage.
15	VCC		Power supply terminal. Usually +5 V .
16	SRCH		Connects a condensor that determines the focus search charge and discharge waveform time constant.

Pin No.	Pin name	I/O	Function and operation
17	Vee		Power supply terminal. -5V
18	FS3	Input	Focus amplifier gain selection terminal. OPEN or GND level.
19	ATSC	Input	Terminal that inputs data that indicates mechanical shock was applied to the player. Tracking error input through BPF.
20	FE	Input	Focus error signal input.
21	FEO	Output	Amp 1 output. Focus error signal output.
22	FE-	Input	Amp 1 invert input.
23	SLO	Output	Amp 3 output. Carriage servo signal output.
24	SL-	Input	Amp 3 invert input.
25	SL+	Input	Amp 3 non-invert input. Carriage servo signal input.
26	DIRC	Input	Utilized during 1 track jump. Usually "H". WHen " L " reverses the track jump pulse direction. Set to a normal tracking mode by "H". When TZC rise and fall detection occurs, it is " L " for a certain period of time.
27	TAO	Output	Amp 2 output. Tracking error signal output.
28	TA-	Input	Amp 2 invert input. Tracking error signal input.
29	TG1		Tracking amp gain selection terminal. Becomes OPEN or GND level.
30	GND		GND terminal

* IC1: CX20109

CX20109 Terminal Functions

RF amplifier

Pin No.	Pin name	I/O	Function and operation
1	FOK	Output	Allows focus servo output. Active "H". PNP open collecter.
2	RFI	Input	RF summing amp output is C coupled for input.
3	RFO	Output	RF summing amp output. Eye pattern test point.
4	RF-	Input	RF summing amp invert input. CR return connection to (3) - (4).
5	PD1	Input	RF I-V amp (1) invert input. Connects to PIN diode B+D for current input.

Pin No.	Pin name	1/0	Function and operation
6	PD2	Input	RF I-V amp (2) invert input. Connects to PIN diode A+C for current input.
7	AGND		Small signal analog system GND.
8	E	Input	E I-V amp invert input. Connects to PIN diode E for current input.
9	EFB	Output	EI-V amp output. CR return connection to (8) - (9).
10	FFB	Output	F I-V amp output. CR return connection to (10) - (11).
11	F	Input	FI-V amp invert input. Connects to PIN diode F for current input.
12	GND		
13	Vee		Negative power supply. -5 V .
14	FE+	Input	Focus error amp non-invert input. Low pass CR connection.
15	FE-	Input	Focus error amp invert input.
16	FE	Output	Focus error amp output. CR return connection to (15) - (16).
17	TE	Output	Tracking error amp output.
18	MIRR	Output	Mirror output. Active "H". PNP open collector.
19	HC	Input	Mirror hold condensor connection terminal.
20	EFM	Output	EFM output comparator output.
21	VSEL	Input	Auto, asymmetry control amp reference input level selection terminal. Connects to +5 V .
22	ASY	Input	Auto, asymmetry control input. Slice the RF signal to generate a square wave.
23	DVcc		EFM comparator system positive power supply. Connects to +5 V .
24	Vcc		Positive power supply. Connects to +5 V .

*IC301: CX20133

CX20133 Terminal Functions

16 bit D/A converter

Pin No.	Pin name	Function and operation	
1	DVEE		- power supply terminal. -5 V.
2	SUB		-5 V
3	TEST1		Not used
4	VCC		+ power supply terminal. +5 V.
5	TEST2		Not used.
6	LATCH	Input	Clock input. When PAM waveform jitter exists, a conversion error occurs. D flip flop clock for this jitter.

Pin No.	Pin name	1/0	Function and operation
7	LRCK	Input	44.1 kHz strobe signal input. Data assignment during the stereo mode. LRCK = " L " $---R$ ch data call. LRCK = " H " ---L ch data call.
8	WCLK	Input	88.2 kHz strobe signal input. Word clock. Changes WCLK from " H " to " L " at 17th BCLK break, then 16 bit data is transferred from the shift register to the latch by this break signal.
9	BCLK	Input	Bit clock input. Data is sent to the.IC sequentially from MSB by synchronization with the rise of this clock. (Data change is by BCLK break.)
10	DIN	Input	16 bit serial data input.
11	LRCKOUT	Output	TC4053BF (CMOS analog switch) drive output.
12	CC	Input	Conversion command. Changes CC to " H " and enters 3 clocks or more from CIN to reset all internal timing circuits. After reset, CC becomes " L " and enters a clock from CIN, then the internal timing circuit starts operating.
13	DGND		GND
14	DVEE		$-5 \mathrm{~V}$
15	DCR	Output	Discharge signal Controlled by LRCK LRCK $=$ " $\mathrm{H}^{\prime}--$ - Output from DCR. LRCK = "L" - - Output from DCL
16	ISET	Input	Integrating current determination terminal. Integrating current is determined by a constant current value that flows from this terminal.
17	IOUTR	Output	Integrating current output terminal LRCK = "L" - - Output from IOUTL LRCK = " H " -- - Output from IOUTR
18	IOUTL	Output	
19	NC		
20	AVEE		$-5 \mathrm{~V}$
21	AGND		GND
22	DGND		GND
23	DCL	Output	Discharge signal Controlled by LRCK. LRCK = "L" - - Output from DCL. LRCK = " H " -- - Output from DCR.
24	DCBIAS		Bias terminal Bias circuit for the discharge signal output circuit.
25	COUT	Output	Clock terminal. 35 MHz .
26	CIN	Input	Clock terminal. 35 MHz .
27	$\overline{\mathrm{CIN}}$	Input	Clock terminal. 35 MHz .
28	DGND		GND

CX23035 Terminal Functions
Digital signal processor

Pin No.	Pin name	1/0	Function and operation
1	FSW	Output	Spindle motor output filter time constant selection output.
2	MON	Output	Spindle motor ON/OFF control output.
3	MDP	Output	Spindle motor drive output. Rough control during CLV-S mode and phase control during CLV-P mode.
4	MDS	Output	Spindle motor drive output. Speed control during CLV-P mode.
5	EFM	Input	EFM signal input from RF amp.
6	ASY	Output	Output for EFM signal slice level control.
7	MIRR	Input	MIRROR input from RF amplifier. Connects to GND.
8	vCOO	Output	VCO output. When EFM signal lock occurs, $f=8.6436 \mathrm{MHz}$.
9	VCOI	Input	VCO input
10	TEST	Input	GND
11	PDO	Output	Phase comparison output of EFM signal and VCO/2.
12	VSS		GND
13	CLK	Input	PD8019E serial data transmission clock input. Latches data at the clock rise edge.
14	$\overline{\text { XLT }}$	Input	PD8019E latch input. Latches 8 bit shift register data (serial data from PD8019E) to each register.
15	DATA	Input	PD8019E serial data input.
16	$\overline{\text { XRST }}$	Input	System reset input. Reset with "L".
17	CNIN	Input	Tracking pulse input.
18	SENS	Output	Outputs internal status by address correspondence.
19	MUTG	Input	Muting input. When internal register ATTM is " L ", MUTG is " L " which is a normal status. When " H ", a silent status occurs.
20	CRCF	Output	Outputs the SUB-Q CRC result. (Not used)

Pin No.	Pin name	1/0	Function and operation
21	EXCK	Input	Clock input for SUB-Q serial output. (Not used)
22	SBSO	Output	SUB-Q serial output. (Not used)
23	SUBQ	Output	SUB-Q output.
24	SCOR	Output	SUB-Q SO+S1 output.
25	WFCK	Output	Write Frame Clock output. When frame sync lock occurs, $f=7.35 \mathrm{kHz}$.
26	RFCK	Output	Read frame clock output. X'tal system 7.35 kHz .
27	GTOP	Output	Frame sync protective status display output. (Not used)
28	GFS	Output	Frame sync lock status display output.
29	DB08	1/0	External RAM data terminal. DATA 8 (MSB)
30	DB07	1/0	External RAM data terminal. DATA 7
31	DB06	1/0	External RAM data terminal. DATA 6
32	DB05	1/0	External RAM data terminal. DATA 5
33	VDD		Power supply terminal. +5 V
34	DB04	1/0	External RAM data terminal. DATA 4
35	DB03	1/0	External RAM data terminal. DATA 3
36	DB02	1/0	External RAM data terminal. DATA 2
37	DB01	1/0	External RAM data terminal. DATA 1 (LSB)
38	RA01	Output	External RAM address output. ADDR01 (LSB)
39	RA02	Output	External RAM address output. ADDR02
40	RA03	Output	External RAM address output. ADDR03
41	RA04	Output	External RAM address output. ADDR04
42	RA05	Output	External RAM address output. ADDR05
43	RA06	Output	External RAM address output. ADDR06
44	RA07	Output	External RAM address output. ADDR07
45	RA08	Output	External RAM address output. ADDR08
46	RA09	Ouptu	External RAM address output. ADDR09
47	RA10	Output	External RAM address output. ADDR10
48	RA11	Output	External RAM address output. ADDR11 (MSB)
49	$\overline{\text { RAWE }}$	Output	Write enable signal output to external RAM. Active "L".
50	$\overline{\text { RACS }}$	Ouput	Chip select signal output to external RAM. Active "L".
51	C4M	Output	X^{\prime} tal $1 / 2$ frequency division output. $f=4.2336 \mathrm{MHz}$.
52	VSS		GND
53	XTAL	Input	X'tal oscillation circuit input. $\mathrm{f}=8.4672 \mathrm{MHz}$.
54	XTAO	Output	X'tal oscillation circuit output. $f=8.4672 \mathrm{MHz}$.
55	C2FL	Output	Correction status output. When C2 system correction attempt is not successful, "H" occurs.
56	C2PO	Output	C 2 pointer display output. Synchronized to audio data output. (Not used.)
57	RAOV	Output	± 4 frame jitter extraction RAM overflow and underflow display output.
58	SLOB	Input	Audio data output code selection input. With " L ", 2's complement output. With " H^{\prime} ", offset binary output.
59	PSSL	Input	Audio data output mode selection input. With " L ", serial output. With " $H^{\prime \prime}$, parallel output. (This unit uses " L ".)
60	APTR	Output	Aperture compensation control output. "H' during R ch. (Not used.)
61	APTL	Output	Aperture compensation control output. "H" during L ch. (Not used.)
62	DA01	Output	When PSSL = "H", DA01 (parallel audio data LSB) output. When PSSL = "L", CIF1 output.

Pin No.	Pin name	1/0	Function and operation
63	DA02	Output	When PSSL = "H", DA02 output. When PSSL = "L", C1F2 output.
64	da03	Output	When PSSL = "H", DA03 output. When PSSL = "L", C2F1 output. (Not used.)
65	DA04	Output	When PSSL = "H", DA04 output. When PSSL = "L", C2F2 output. (Not used.)
66	DA05	Output	When PSSL = "H", DA05 output. When PSSL = "L", UFGS output. ((ot used.)
67	DA06	Output	When PSSL = "H", DA06 output. When PSSL = "L", $\overline{\text { WFCK output. (}}$ (0 used.)
68	DA07	Output	When PSSL = "H", DA07 output. When PSSL = "L", FCKV output. (Not used.)
69	DA08	Output	When PSSL = "H", DA08 output. When PSSL="L", FCKX output. (Not used.)
70	DA09	Output	When PSSL $=$ " $\mathrm{H}^{\prime \prime}$, DA09 output. When PSSL $=$ " L ", $\overline{\text { PLCK }}$ output. ((Not used.)
71	DA10	Output	When PSSL $=$ " ${ }^{\prime \prime}$ ", DA10 output. When PSSL $=$ " $L^{\prime \prime}$ ", LRCK output. (Not used.)
72	DA11	Output	When PSSL = "H", DA11 output. When PSSL = "L" C4LR output. (Not used.)
73	VDD		Power supply terminal. +5 V
74	DA12	Output	When PSSL = " $\mathrm{H}^{\prime \prime}$, DA12 output. When PSSL $=$ " L ", $\overline{\text { DENL }}$ output. (Not used.)
75	DA13	Output	When PSSL = " $\mathrm{H}^{\prime \prime}$, DA13 output. When PSSL $=$ " L ", $\overline{\text { DENR }}$ outut. ((Not used.)
76	DA14	Output	When PSSL $=$ " $H^{\prime \prime}$ ", DA14 output. When PSSL $=$ " $L^{\prime \prime}$ ", $\overline{C 210}$ output.
77	DA15	Output	When PSSL = " H ", DA15 output. When PSSL = "L', C210 output. ((Not used.)
78	DA16	Output	When PSSL $=$ " H ", DA16 (parrallel audio MSB) output. When PSSL = "L", DATA output.
79	wDCk	Output	88.2 kHz strobe signal output
80	LRCK	Output	44.1 kHz strobe signal output

Notes:
C1F1: [C1 decode error correction status monitor output.]
C2F1: [C2 decode error correction status monitor output.]
UGFS: Unprotected frame sync pattern output.
UGFS: Unprotected frame sy
FCKV: WFCK/4 or WFCK/8 output.
FCKX: RFCK/4 or RFCK/8 output.
PLCK: VCO/2 output. When locked to EFM signal, $f=4.3218 \mathrm{MHz}$.
$\frac{\mathrm{C4LR}:}{} \quad 176.4 \mathrm{kHz}$ strobe signal
DENR: R-ch serial data enable signal.
C210: C210 invert output.
C210: Bit clock output. $f=2.1168 \mathrm{MHz}$
DATA. Audio signal serial data output.

M5M5117FP Terminal Functions
RAM

Pin No.	Pin name	1/0	Function and operation
1-8	RA11-RA04	Input	Address input
9-11	DBO1- DB03	1/0	Data 1/0
12	GND		ov
13-17	DB08- DB04	1/0	Data I/O
18	$\overline{\text { s }}$	Input	Chip select input. "L" during write-in and read out.
19	A10	Input	Address input
20	$\overline{\mathrm{OE}}$	Input	Output enable input. "L" during read out.
21	w	Input	Write control input. "L" during wite-in, " $H^{\prime \prime}$ "during read out.
22,23	RA02, RA03	Input	Address input.
24	V cc		+5V

- Display Unit

IC702: M51956BL

* IC701: PD4074D

PD4074D Terminal Functions
System controller

Pin No.	Pin name	1/0	Function and operation				
1	NC						
2	$\overline{\text { VSENS }}$	Input	ACC voltage detection circuit signal input terminal. CMOS input. ACC ON: "L" ACC OFF: " ${ }^{\prime}$ "				
3	NC						
4	NC						
5	DIM	Input	Dimmer control input terminal. CMOS input. Changes FL tube dy namic drive duty to perform. "H": Dimmer ON "L": Dimmer OFF				
6	$\overline{\mathrm{NH}}$	Input	$+B$ disable detection terminal. CMOS input. Operation stops with " L " to wait until "H" occurs.				
7	TEMP	Input	High temperature detection terminal. CMOS input. With " L ", a high temperature judgement is made to stop system operation.				
8	ACK	Input	Communication control line - Data link control Communication mode is determined by the level of this signal. - Handshake control Communication direction (PD4074D \rightarrow PD8019E) Indicates that outputted data was accepted by PD8019E when this signal rises. Communication direction (PD8019E \rightarrow PD4074D) Indicates that data outputted by PD8019E is effective when this signal breaks.				
9	brea	1/0	Communication - Data link contr When "L" occu ACK level outpu - Handshake co When a data stri termination of t		ol line. C D8019E, y PD801 Comman When a c cation sta Data send PD4074D with STB ent, "L" data stri		municatio unication nable status to be se rs with S status fr mediate ccurs wh cated by
10-13	D0- D3	1/0	Communication data bus. For CMOS $1 / 0$.				
14	$\overline{\text { FRONT }}$	Input	FRONT switch detection terminal. CMOS input. Terminal that detects if the plate unit (mechanism part) is at the front or not. (If it is at the front, it is " L "). Indicates eject completion.				
15	REAR	Input	REAR switch detection terminal. CMOS input. Terminal that detects if the plate unit is at the back or not. (" L " if at the back.) Indicates loading completed.				
16	DISC	Input	DISC switch detection terminal. CMOS input. Terminal that detects if a disc is inserted or not. " H " if a disc is present.				
17	PUSH	Input	PUSH switch detection terminal. CMOS input. Terminal that detects if an inserted disc is pressed ro not. " L " if pressed.				
18	KDO	Input	KEY input terminal by matrix with KS3-KS1. CMOS input.				
19	KD1	Input			KS3	KS2	ksi
20	KD2	Input		K00	EJECT	FF	SCAN
21	KD3	Input		KD1	$\frac{\text { RELPLAY }}{\text { TR+ }}$	REV	${ }^{\text {M P-PLAY }}$
				K03	TR-	\square	RPT

Pin No.	Pin name	1/0	Function and operation
22	NC		GND
23	$\times 2$		Clock oscillation terminal. 4 MHz
24	$\times 1$		Clock oscillation terminal.
25	Vss		GND
26	VDD		Power supply terminal. +5 V
27	h	Output	
28	9	Output	
29	\dagger	Output	
30	e	Output	FL anode output. P.ch open drain with pull down.
31	d	Output	
32	c	Output	
33	b	Output	
34	a	Output	
35	KS3	Output	
36	KS2	Output	Strobe output for key scan.
37	Ks1	Output	P-ch open drain no pull down.
38	NC		
39	DCNT	Output	FL display DC/DC converter control terminal. P-ch open drain no pull down. Power is supplied to the DC/DC converter with " H ".
40	POWER	Output	Servo system DC/DC converter control terminal. P-ch open drain no pull down. With "H", PD8019D reset start, DC/DC converter ON
41	DISC SET	Output	LED (DISC SET) control terminal During disc loading: FIGURE Disc set: " H "
42-50	1G-9G	Output	FL grid output. P-ch open drain with pull down.
51	VLOAD	Input	FL driver power supply. -30V
52	vp	Input	FL driver power supply. Connects to GND.
53	NC		
54	BTB	Output	AUX B output terminal. CMOS output. With " H ",+B output from AUX connecter.
55	NC		
56	STB	Output	Communication control line. CMOS output. - Data link control Outputs " H " for a data send request from PD8019E to notify data send request acceptance. - Handshake control Communication direction (PD4074D \rightarrow PD8019E) Outputs " L " to indicate that ouptut data is effective for PD8019E. Communication direction (PD8019E \rightarrow PD4074D) Outputs " H " to indicate that data output from PD8019E was accepted
57	NC		GND
58	VDD		Power supply terminal. +5 V
59	LOAD	Output	Disc load control terminal. CMOS output. LOAD with " H ".
60	EJECT	Output	Disc Eject control terminal. CMOS output. EJECT with " H ".
61	NC		
62	NC		
63	RESET	Input	Reset terminal. CMOS input. "H": Reset ON' "L": Reset OFF
64	BEEP	Output	Buzzer output terminal. CMOS output.

11. SCHEMATIC CIRCUIT DIAGRAM

	1	2	3	4

62

13. CHASSIS EXPLODED VIEW

NOTE:
For your parts Stock Control, the fast moving items are indicated with the $\star \star$: GENERALLY MOVES FASTER THAN \star.
This classification shall be adjusted by each distributor because it depends on
model number, temperature, humidity, etc.

- Parts whose parts numbers are omitted are subject to being not supplied.

Parts marked by "0" are not always kept in stock. Their delivery time may be
longer than usual or they may be unavailable.

- Parts List

Mark	No.	Part No.	Description	Mark	No.	Part No.	Description
	1.	CDK-403	DIN Cord		31.		Plug
	2.	CDE1161	Cord		32.		Plug
	3.	CDK-402	Cord		33.	CKS1063	Connector
	4.		Plug		34.	CKS-721	Connector
	5.	PMS26P040FMC	Screw		35.		Plug
	6.		Shield Case		36.		Connector
	7.		Connector		37.	CKs-720	Connector
	8.		Clamper		38.	CKS1122	Connector
	9.		Insulator		39.		Plug
	10.		Shield Case	-	40.	cw $\times 1020$	Display Unit
-	11.	CWR1001	Power Supply Assy		41.	CBA-178	Screw
	12.	CAE-246	Button (TR+)		42.	CNB1049	Case
	- 13.	CAE-247	Button (TR-)		43.	CNM1166	Cushion
	$\begin{array}{r} 14 . \\ \times \quad 15 \end{array}$	CAE-248 CNM1100	Button (R.PLAY) Cushion	-	4.4 45.	Схк2010	CD Mechanism Unit Bracket
		PMS30P050FMC	Screw			CKS1070	Connector
	$\begin{aligned} & 17 . \\ & 18 . \end{aligned}$	CAC1081 CNM110	Button Cushion	-	$47 .$	CKS-719 CWX1019	Connector
	19.	CNM1102	Cushion		49.		Main Assy Insulator
	20.	CXA1506	Grilie Unit		50.		Insulator
	- 21.	BG4524K	LED		51.		Chassis
	- 22.	LN81RC5V	LED		52.		Seal
	* 23.	CSG-255	Switch		53.	CbA1019	Screw
	24.	LN31GC6	LED		* 54.	CAE-243	Button (EJECT)
	25.	Caw1003	FLTube		* 55.	CAE-244	Button (SCAN)
	26.	CPV1005	Buzzer		* 56.	CAE-245	Button (M•PLAY)
	27.	vacant			57.	BMZ26P060FMC	Screw
	28.	BPZ20P060FMC	Screw		58.	CMZ26P040FMC	Screw
	29.	CNV1154	Holder		59.	CEF-007	Clamper
	30.		Plug		60.	CBA1049	Screw

Note
*Two screws labeled 53 and 60 are attached to the back of the se to protect it in transit. If the set is shipped (i.e., for repairs), be sure to protect your set by re-attaching these screws.

14. CD MECHANISM UNIT EXPLODED VIEW

15．ELECTRICAL PARTS LIST

NOTE：

When ordering resistors，first convert resistance values into code form as shown in the following examples．
Ex． 1 When there are 2 effective digits（any digit apart from 0），such as 560 ohm and 47 kohm （tolerance is shown by $J=5 \%$ ，and $K=10 \%$ ）．

560Ω	56×10^{1}	561 ．．．．．．．．．．．．．．．．．．．．．．RD1／4PS 固 6 回 J
$47 k \Omega$	47×10^{3}	473．．．．．．．．．．．．．．．．．．．．．．RD1／4PS团 B $^{\text {J }}$ J
0.5Ω	OR5	RN2H回回區K
1Ω	010	．．RS1P回回回K

Ex． 2 When there are 3 effective digits（such as in high precision metal film resis－ tors）．
$5.62 \mathrm{k} \Omega \quad 562 \times 10^{\prime}$ RN1／4SR国国回 F
－For your parts Stock Control，the fast moving items are indicated with the marks $\star \star$ and \star ．
$\star \star$ ：GENERALLY MOVES FASTER THAN \star ．
This classification shall be adjusted by each distributor because it depends on model number，temperature，humidity，etc．
－Parts whose parts numbers are omitted are subject to being not supplied．
－The part numbers shown below indicate chip components．
Chip Resistor
RS1／8S $\square \square \square J$
Chip Capacitor（except for COS．．．．．）
CKS．．．．．，CCS．．．．．

Main Assy
miscellaneous

Mark	Symbol \＆Description	Part No．	Mark	Symbol \＆Description		Part No．
＊${ }^{\text {＊}}$	IC1	CX20109	\star	D202， 203	Chip Diode	MA153
＊＊	IC2	IR3C05	\star	D204		KV1226Y
＊\star	IC101	C×20108	\star	D301	Chip Diode	MA151WA
＊＊	IC102，103，203， 307	M5218FP	＊	D401	Chip Diode	MA3075
$\star \star$	IC104， 105	PA3021A		L1， 2	Ferri－Inductor	CTF1007
\star＊	IC201	CX23035		L201	Coil	CTA1001
＊＊	IC202	M5M5117FP		L301	Inductor	CTF1006
＊${ }^{\text {＊}}$	IC204	PD8019E	\star	TH1	Thermister	CCX－021
＊	IC301	CX20133	$\star \star$	VR1	Semi－fixed， $47 \mathrm{k} \Omega$（ B$) \times 4$	CCP1003
＊＊	IC302， 304	M5221 FP	$\star \star$	VR2	Semi－fixed， $10 \mathrm{k} \Omega$（B）$\times 3$	CCP1004
		（NJM072M）		$\times 201$	X＇tal 8．467MHz	CSS1009
＊${ }^{\text {＊}}$	IC303	TC4053BF		$\times 202$	Ceramic Resonator	CSS－042
＊＊	IC305， 306	KHA210A		X301	X＇tal 35 MHz	CSS1008
＊＊	IC401	M54546L	＊	FU1	Fuse，4A	CEK1002
＊＊	Q101，201， 303 Chip Transistor	UN2211	RESIST	ORS		
＊\star	0202	UN221D	RESIST			
＊＊	Q301， 302 Chip Transistor	2SK508－K52 or	Mark	Symbol \＆	Description	Part No．
		2SK508－K53				
$\star \star$	Q304， 305 Chip Transistor	2SD1048－X6 or		R15		
		2SD1048－X7 or		R316－323	4．7k	RS1P220JL
		2SD1048－X8 or		Other Resis	tors（Chip Resistors）	
		2SC3326		Other Resis	tors（Chip Resistors）	RS1／10Sロロコ
$\star \star$	Q306， 307 Chip Transistor	UN2111				
＊${ }^{\text {＊}}$	0401	2SC3074－Y				
＊	D101	MTZ5R6JC				
＊	D102－109	ERA82－004Y				
\star	D110	ERA15．02				
＊	D201 Chip Diode	MA151K				

CAPACITORS

Mark	Symbol \＆Description
	C1， 18
	$\begin{aligned} & \text { C2, } 6,7,16,17,19,20,101,102 \\ & 107,115,119,126,130,202-204 \\ & 206,213 \end{aligned}$
	C4， 5
	C8，9，15， 402
	C10 Chip Capacitor
	C11
	C13，14， 109
	C103 Chip Capacitor
	C104， 124
	C105， 106
	C108
	C110
	C111， 112
	C113， 207
	C114
	C116， 118
	C120
	C121
	C123，306，310， 311
	C125，129，205，210， 211
	C127 $1000 \mu \mathrm{~F} / 16 \mathrm{~V}$
	C128， 132
	C133，134， 218
	C135， 136
	C139， 224
	C201 Chip Capacitor
	C208， 209
	C212，219， 220
	C214，215，302， 309
	C216， 217
	C221，222， 303 Chip Capacitor
	C225
	C301，313，316，317， $322-325,329$
	C304
	C307
	C308，320，321， 328
	C312
	C314， 315
	C318， 319
	C326， 327 33 F／6．3V
	C330， 401

Power Supply Assy

MISCELLANEOUS

Mark	Symbol \＆Description	Part No．
＊＊	IC601 Converter	KHA803
＊	0601	2SB822F
＊＊	Q602 Chip Transistor	UN2211
＊	D601，602，604， 605	ERA 15－02
\star	D603 Chip Diode	MA3120
	L601， 602 Coil	CTH－035
	L603 Coil	CTH1006
	L604 Ferri－Inductor	CTF－078
	L605 Transformer	CTX1005
＊	ZNR601 Surge Absorber	ERZ－C07DK220
RESISTORS		
Mark	Symbol \＆Description	Part No．
	R601－610	RS1／8Sロロロ」

CAPACITORS

Mark

Symbol \＆Description	Part No．
$\begin{aligned} & \text { C601, 602, 604, 605, 608, 610, 614 } \\ & 616-618 \end{aligned}$	CKSYF473Z50
C603， $6061000 \mu \mathrm{~F} / 16 \mathrm{~V}$	CCH 1003
C607， 609	CEAUH221M10
C611	CEA101M16LL
C612	CSYA1R5M25OS
C613	CEA330M25LL
C615	CEA330M35LL
C619， 621 Filter	CCG1001
C620	CCG－104

Display Unit

miscellaneous

Mark	Symbol \＆Description	Part No．
	IC701	PD4074D
	IC702	M51956BL
＊\star	0701	2SD1226M
＊\star	Q702，708， 709 Chip Transistor	UN2111
＊＊	$\begin{aligned} & \text { Q703-705, 707, } 710,711 \\ & \text { Chip Transistor } \end{aligned}$	UN2211
$\star \star$	Q706	2SB822F
＊＊	0712 Chip Transistor	2SD601－YO or
		2SD601－YR or
		2SC2712－LG or
		2SC2712－LL
\star	D701	HZ6LB1
＊	D702 Chip Diode	MA3068
＊	D703－706 Chip Diode	MA151K
＊	D707－711，716－718 LED	BG4524K
＊	D712－714，719， 720 LED	LN31GC6
＊	D715 LED	LN81RC5V
＊	D721－Chip Diode	MA3200
	$\times 701$ Ceramic Resonator	CSS－049
	X702 Buzzer	CPV1005
＊	S701－711 Switch	CSG－255
	FL Tube	CAW1003

5×-2

RESISTORS

Mark	Symbol \＆Description	Part No．
	R722－727	RS1／2PロロロJL
	Other Resistors	RS1／8SロロロJ

CAPACITORS

Mark	Symbol \＆Description	Part No．
	C701	CKSYB103K50
	C702	CEA101M6R3LS
C705	CCSCH330J50	
	CEA220M16LS	

Switch P．C．Board

Mark

Symbol \＆Description
Switch（Push，Disc）
Part No．
CSN－094

Motor P．C．Board

Mark	Sym	Description	Part No．
＊＊	M1	Motor Unit（Carriage）	CXA1188
＊\star	S1	Switch（Home）	CSN－094

Logic Unit

Mark	Symbol \＆Description	Part No．
＊＊	IC951	TC4066BF
	R951－954 Chip Resistor	RS1／10SロロロJ
	C951 Chip Capacitor	CSZS010M10TL
	C952	CKSQYB103K50

Miscellaneous Parts List

Mark	Symbol \＆Description		Part No．
	Pickup		CGY1001
＊	M2	Motor Unit（Spindle）	CXM1005
＊	M3	Motor Unit（Loading）	CXA1189
＊＊	S4， 5	Switch（Front，Rear）	CSN－094

16. PACKING METHOD

Fig. 50

- Parts List

Mark	No.	Part No.	Description
	1.	CHG1077	Carton
	2.	CRD1041	Owner's Manual
			(English, French, German, Spanish)
		CRD1042	Owner's Manual
			(Swedish, Norwegian, Dutch, Italian)
			Card
	3.	CHP1036	Styrofoam (L)
	4.	CHP1037	Styrofoam (R)
	5.	CEG-114	Cover
		CRP1004	Caution Card
	6.	CNB-723	Mounting Bracket
	7.	CEA1108	Accessory Kit
	7-1.	CNF-111	Strap
	7-2.	CNN-058	Spacer
	7-3.		Screw Kit
	7-3-1.	CBA-102	Screw
	7-3-2.	HMF40P080FZK	Screw
	7-3-3.	NF50FMC	Nut

17. ADJUSTMENT

- Adjustment Point

- Test Point

MAIN ASSY

Fig. 52

－Test Mode

1）Starting

Starts by simultaneously pressing TR TR－Clear
to light all displays．

2）Functions

Button name	Operation
EJECT／RELOAD	Disc load，eject．
REL／PLAY	DD converter ON，OFF． However，during continuous jump，play occurs with jump release．
F．FORWARD REVERSE	＊In case DD converter is ON，Focus tracking OFF． －Repeat display OFF Carriage FWD／REV －Repeat display ON Tracking actuator FWD／REV ＊In case DD converter is ON，Focus tracking ON． －FWD／REV continuous jump
TRACK＋	Carriage，tracking loop switch individual ON－OFF． （IC101 CX20108 system adjustment function）
TRACK－	Focus search ON－OFF
SCAN／MEMO	Tracking servo ON－OFF
REPEAT	＊In case DD converter is OFF All display segments ON－OFF． ＊In case DD converter is ON． REPEAT display ON－OFF（FWD／REV function selection）．

3）Display

Display	Status
	Indicates DD converter OFF．However，all lighting enabled by REPEAT．
－－－－－	Indicates DD converter ON．
－－－－－－SCN	Indicates DD converter ON．Focus closed．
8．12．345	Indicates tracking close．
－こここここ	Indicates tracking close，non－drive．

4) Flow chart

Step No.	Oscilloscope range		Test point	Adjustment point	Confirmation /adjustment specification	Adjustment procedure
	X	Y				
2				$V R$ in the pickup.	$250 \pm 20 \mu \mathrm{~W}$	Confirm that the lens shifts toward the outer circumference when the F. FORWARD key is pressed and toward the inner circumference when the REVERSE key is pressed. Lens shift is about 0.2 mm . Press the REPEAT key to return the DD converter to an ON status. \square is displayed. LD power confirmation and adjustment - Place a power sensor on the pickup object lens. - If it is outside the proper range, quickly adjust VR in the pickup so that it is within the proper range. (Increased by clockwise movement). - Turn it slow so that the meter index swing is not excessive.
3			RF	$\begin{aligned} & \text { VRI-1 } \\ & \text { (RF) } \end{aligned}$	$0.1 \pm 0.1 \mathrm{~V}$	RF offset adjustment - DD converter - ON. Perform this without a disc.
4			$\begin{aligned} & \text { EFB } \\ & \text { FFB } \end{aligned}$	$\begin{aligned} & \text { VRI-3 } \\ & \text { (T.B) } \end{aligned}$	$0 \pm 0.5 \mathrm{~dB}$	Tracking balance rough adjustment - Insert a disc and set it by pressing the /RELOAD key twice. - Turn the DD converter ON by pressing the REL/PLAY key. - Obtain focus by pressing the TRACK- key to enter a tracking open status. - Adjust the AC component level of sub beam output EFB, FFB by using a two needle voltmeter so that the level difference is a standard value.
5		(While (Tracking	TAO king r, carria	VRI-4 (T.O) has an O ge - PWM	$0 \pm 50 \mathrm{mV}$ status.) \rightarrow non-drive) \rightarrow	Stray light adjustment - After ejecting a disc by pressing the EJECT /RELOAD key, remove the disc. - Provide the DD converter with an ON status by pressing the REL/PLAY key. - Provide the non-drive tracking circuit with a close status. MIRR KILL: "L" - - - Grounded to S. GND BYPASS: "'L" - . - Grounded to S. GND If this is not performed, the actuator might be damaged by fire. Press the TRACK + key. * MIRR KILL: "L" can be preset. BYPASS: " L " shall occur after DD converter ON. $======$ is displayed. - Adjust it so that it is within the range. - After adjustment, return the DD converter to an ON status by pressing the TRACK + key. - BYPASS: "L" release.

$\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$	Oscilloscope range		Test point	Adjustment point	Confirmation /adjustrnent specification	Adjustment procedure
	X	Y				
6	$50 \mathrm{mV} / \mathrm{div}$ TAO \qquad	$200 \mathrm{~ms} /$ div	TAO $10 \mu \mathrm{~F}$ S.GND	VRI-3 (T.B) \rightarrow Oscillo	$0 \pm 500 \mathrm{mV}$ scope Fig. 53 4 Fig. 54	Tracking balance fine adjustment - Insert a disc and set it by pressing the EJECT IRELOAD key twice. - Press the REL/PLAY key to provide a DD converter ON status. - Enter a non-drive tracking close status. After entering a tracking open status by pressing the TRACK - key, BYPASS entry: "L", MIRR KILL: "L" then press the SCAN key. - Adjust it so that the average value of the TAO 1 Hz low pass filter output is zero for several seconds. - When you are not certain, repeat this by inserting a disc again. - Enter a tracking open status by pressing the SCAN key, and BYPASS: "L" release and MIRR KILL: "L" release. Then return the DD converter to an ON status by pressing the TRACK - key. - After the above procedure has been terminated, confirm the stray light adjustment again. If it is within 50 mV , it is OK . If it is more than 50 mV , perform the stray light adjustment and tracking balance fine adjustment again.

Step
No. Oscilloscope range

Grating adjustment screww (Adjusted by a grating driver)
Fig. 67

Grating adjustment

- Insert a disc and set it by pressing the EJECT/RELOAD key twice.
- Press the REL/PLAY key to turn the DD converter ON.
- Press the TRACK - key to obtain focus and to enter a tracking open status.
- Play back the TNO 6. (TYPE3: TNO 7)
- Measure the tracking error waveform by using an oscilloscope. At this time, insert a 4 kHz cutoff low pass filter.
- Adjust it with the grating driver and find a status in which the main beam and sub beam are on one track (nullpoint).
* There are many cases in which tracking error is minimized. The null point provides a status in which the envelope is cleanest and has less noise.
- While slowly turning the grating driver clockwise starting from the null point, adjust it to the point where the waveform (tracking error signal) amplitude becomes maximum first.

