

STEREO FREQUENGY EQUALIZER Audio Dynamics Corporation
PAGE
ELECTRICAL PERFORMANCE SPECIFICATIONS 3
CIRCUIT DESCRIPTION 4-9
SWITCH FUNCTIONS 10-18
DISASSEMBLY INSTRUCTIONS 19
BLOCK DIAGRAM 20
LED METER CALIBRATION PROCEDURE 21-23
CALIBRATOR SCHEMATIC 23
IC INTERNAL DIAGRAM 24
IC \& TRANSISTOR LEAD IDENTIFICATION 24
TROUBLESHOOTING - SYMPTOM - CAUSE/REMEDY 25-27
AMP \& POWER SUPPLY P.C.B. 28-29
VOLUME P.C.B. 30
FILTER P.C.B. 31
LED P.C.B. 32
ELECTRICAL PARTS LIST 33-39
EXPLODED VIEW PARTS LIST 40-41
MISCELLANEOUS PARTS LIST 42
SCHEMATIC DIAGRAM 44-45
EXPLODED VIEW 46-47

THIS MANUAL COVERS SERVICE INFORMATION FOR FOUR VERSIONS AS FOLLOWS:
(1) USA (UL) VERSION
(2) CANADIAN (C.S.A.) VERSION
(3) EUROPEAN VERSION
(4) PX VERSION
: Supply Voltage is $120 \mathrm{~V} \mathrm{AC}, 60 \mathrm{~Hz}$.
Supply Voltage is $120 \mathrm{~V} \mathrm{AC}, 60 \mathrm{~Hz}$.
Supply Voltage is $220 / 240 \mathrm{~V} \mathrm{AC}, 50 \mathrm{~Hz}$.
: Supply Voltage is $100 / 120 / 220 / 240 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$.

ELECTRICAL PERFORMANCE SPECIFICATIONS

	(Unit)	(Nominal)	(Limit)
Frequency response at flat position, Input level $=0.775 \mathrm{~V}$	(Hz)	$5-100 \mathrm{~K}_{-1.0}^{+0.5} \mathrm{~dB}$	$10-100 \mathrm{~K}_{-1.0}^{+0.5} \mathrm{~dB}$
Control Frequency accuracy at 32 Hz	(\%)	± 10 \%	± 15 \%
at 56 Hz	(\%)	± 10 \%	± 15 \%
at 100 Hz	(\%)	± 10 \%	± 15 \%
at 180 Hz	(\%)	± 10 \%	± 15 \%
at 320 Hz	(\%)	± 10 \%	± 15 \%
at 560 Hz	(\%)	$\pm 10 \%$	± 15 \%
at 1 KHz	(\%)	± 10 \%	± 15 \%
at 1.8 KHz	(\%)	$\pm 5 \%$	± 10 \%
at 3.2 KHz	(\%)	$\pm 5 \%$	± 10 \%
at 5.6 KHz	(\%)	$\pm 5 \%$	± 10 \%
at 10 KHz	(\%)	$\pm 5 \%$	± 10 \%
at 18 KHz	(\%)	$\pm 5 \%$	± 10 \%
(Output level $=0.775 \mathrm{~V}$)			
Control Range at 0.775 V input	(dB)	+13.5	+12-0.5
	(dB)	-13.5	$-12_{-3.5}^{+0}$
Harmonic Distortion at 1 V output from 20 Hz to 20 KHz (\%) 0.015 0.035			
Hum and Noise ratio (Input $=1 \mathrm{~V}$, and shorted, output = A weighted)	(dB)	98	88
Dynamic Range into $10 \mathrm{Kohms} \mathrm{load} \mathrm{(All} \mathrm{controls} \mathrm{=} \mathrm{Flat)}$	(V/rms)) 10	9
Total Gain (All controls = Flat)	(dB)	0	± 1.0
Input impedance	(K ohm)) 75	-
Output impedance at 1 KHz	(ohm)	100	-
Intermodulation Distortion at 1 V Output, (\%) 0.015 0.035			
Meter Tolerance at -12 dB point	(dB)	± 0.5	± 1.0
at 0 dB point	(dB)	± 0.5	± 1.0
at +12 dB point	(dB)	± 0.5	± 1.0
at other points	(dB)	± 1.0	± 2.0

When each control range is measured, other controls should be centered (0 dB).

SOUND SHAPER TWO CIRCUIT DESCRIPTION

MAIN POWER SUPPLY (Refer to Figure a)

The voltages of the secondary tap of the Power Transformer T601 are approximately $+28.9 \mathrm{~V} /$ -28.3 V when the current of the rectifier circuit is $+115 \mathrm{~mA} \mathrm{DC} /-160 \mathrm{~mA} \mathrm{DC}$.
The Rectifier circuit consists of a Bridge Diode (D227) and Capacitors (C214, C215).
This voltage is applied to the base of TR201/202 via a network which consists of R269/270, C210/ 211 and D224/225 providing a constant output voltage from the emitter of TR201/202.
This output voltage is regulated by TR201/202 and C208/209.
It supplies $+17.8 \vee \mathrm{DC} /-18.2 \mathrm{~V} \mathrm{DC}$ to the equalizer circuit and meter circuit.
Also through the network of R273, D223 and C207-5.6 V DC is supplied to both the LED Meter and the Comparator control circuits.

LED METER COMPARATOR CIRCUIT DESCRIPTION

The Power Supply and the bias configuration (Refer to LED Meter circuits)

The power supply for the LED Meter Comparator circuit consists of full-wave rectifiers, which provides plus 15.8 V , minus 9.7 V DC to IC202 through IC208.
LED indication level is provided from the Zener diode D223 (+5.6 V DC).
The $+11.6 /-15.8 \mathrm{~V}$ DC source is applied to LED comparator ICs IC202 through IC208.
The +5.6 V DC source provides a stable voltage to VR201(L) and VR202(R) for LED Meter indicator level.

OPERATIONAL AMPLIFIER FEEDBACK CIRCUIT (Refer to Figure b)

The signal to the (-) input causes a change in output that is inverted in phase relative to the input. The signal to the $(+)$ input causes a change in output that is in phase with the input.
With no signal to Rin, the $(+)$ input sees 0 Volts through R_{B}, causing the output to be positivegoing. (-) input voltage is equal to $(+)$ input voltage ($=0 \mathrm{~V}$) - known as an Imaginal Short.
When the output reaches 0 V , the $(-)$ input also sees 0 V through resistor R_{F} (and further output change is inhibited). The output, $(+)$ input and $(-)$ input are now all 0 V .
The (-) input remains at 0 V regardless of the signal into Rin.
Example: An input more positive than 0 V to Rin causes the output to be negative-going. The output continues to drop until the feedback through R_{F} is lowered by an amount sufficient to equalize the imbalance between the (+) and (-) inputs caused by the input signal. Because of the amplifier's high gain and speed, the imbalance between the $(+)$ and $(-)$ inputs is always small.
Since the voltage at the $(-)$ input is always at 0 Volts, the $(-)$ input is effectively at $A C$ ground. Essentially, therefore, the entire input signal appears across Rin and the entire output signal appears across RF.
Since the (-) input voltage is always 0 V the current into the amplifier's (-) input is constant. Since this current is supplied by Rin^{2} and R_{F} any change in current due to input signal through $\mathrm{Rin}_{\mathrm{in}}$ is offset by an opposite and equal change of current through R_{F}.
For AC signal currents, and if we ignore the negative values indicating signal inversion, the gain of the amplifier can be calculated as follows:

$$
I\left(R_{i n}\right)=I\left(R_{F}\right) \quad \text { Since } I=\frac{E}{R}, \frac{E\left(R_{i n}\right)}{R_{i n}}=\frac{E\left(R_{F}\right)}{R_{F}}, \frac{R_{F}}{R_{i n}}=\frac{E\left(R_{F}\right)}{E\left(R_{i n}\right)}=G A I N
$$

NOTE: NJM4560 of this circuit operates from split power supplies. [plus (+) supply at Pin No. 8 and minus (-) supply at Pin No. 4].

PRECISION HALF-WAVE RECTIFIER AND AMPLIFIER CIRCUIT (Refer to Figure c)

The basic fault with diode rectifier circuits is that the diodes do not conduct until a specific voltage is reached. The above circuit eliminates that fault and also amplifies the output.
Referring to the basic circuit, note that: (1) With no input signal D205 is conducting slightly to establish $0 V D C$ at $A(-)$ input and $0 V D C$ at A out; (2) When D207 is barely conducting a small amount of feedback exists. Therefore, the gain of the amplifier is very high. Less than one millivolt will cause the output to change by a volt or more. Operation is as follows: A negative input causes a positive-going change in the amplifier output. Since the gain is high until D205 conducts fully, the amplifier output jumps to 0.2 Volts long before the input reaches a millivolt (in a very short time). At this point D205 is fully conducting, has a low impedance compared to $R_{F}(n)$, and exhibits a 0.2 V drop across it. The rectifier output is now -85 mV DC. Since the feedback loop (R_{F}) has been completed by D207 any further decrease in input voltage is amplified by the ratio of $\frac{R_{F}(n)}{R_{i n}}$ which is approximately equal to 3 for this circuit.
A positive input causes the output to decrease in a manner similar to that just described except that the feedback is through D207 and $\mathrm{R}_{\mathrm{F}}(\mathrm{p})$. The amplifier output is blocked from appearing at the rectifier output by D205 (D205 is reverse biased with respect to the following stages which are returned to the 0 V DC line).
In this manner, appearing at D205 cathode are negative half-wave pulses whose amplitude is directly proportional to the input signal level.

The following refers to the complete schematic:
The negative pulses at D205 cathode are filtered into an average DC voltage by R207 and R203 and this voltage serves as input to the LED meter comparator.
R205 and R207 serve to maintain positive feedback around NJM4560 the positive half-wave excursions of the input signal. As the amplifier's output is positive during this time, D207 is forward biased (D205 is off) and the feedback path now consists of R205 and D207. The amplifier is thus kept out of saturation and free from oscillations throughout the full input cycle.
The IC bias circuit uses a split power supply which provides +15.8 V DC at pin No. 8 and -9.7 V DC at Pin No. 4 on IC201.

COMPARATOR CIRCUIT FOR LED LEVEL METER DESCRIPTION

Comparator circuit operation

The IC comparator circuit consists of seven IC's NJM4558 or TL4558.
The IC comparator operates by comparing the (-) input level to $(+)$ input level, which output voltage is changed from minus to plus DC voltage. Thus DC currents flow to each LED.
With no signal, input level of the (-) input level [No. $2(\mathrm{~L})$ or No. 6 (R)] is kept to 0 V DC.
$(+)$ input level [Pin No. $3(\mathrm{~L})$ or Pin No. $5(\mathrm{R})$] of IC208 is kept to minus DC voltage (about -60 mV) by half-wave rectifiers through VR201 (L) [VR202 (R)] and VR203 (L) [VR204 (R)]. Thus, the output voltage of IC208 [Pin No. 1 (L) or No. 7 (R)] is kept at a minus DC voltage.
When minus DC voltage is applied to (-) input, and causes the (-) input voltage to be larger (or equal) than (+) input voltage, output appears as plus DC voltage. (V3 $\leqq \mathrm{V} 2$)
Thus LED D513 (L) and D514 (R) are lit at -12 dB points. But D501 through D511 (L) and D502 through $\mathrm{D} 512(R)$ are not lit because the input voltage is too low.
Each LED conducts with a (-) input level which is determined by VR201(L), VR202(R) (IC202), R217(L), R218(R) (IC203), R225(L), R226(R) (IC204), R233(L), R234(R) (IC205), R241(L), R242(R) (IC206), R249(L), R250(R) (IC207).
With increase in minus DC voltage, which is provided to (-) input, each LED is lit in order from D511 to D501(L)[D512 to D502(R)].

POPPING NOISE PROTECTIVE CIRCUIT

This circuit eliminates the popping noise from the speakers output when the power switch is turned "on" or "off".
This circuit consists of TR203, TR204 and TR109/110.
When power is "on", -27.7 V DC is provided to the gate of TR109/110 through D226, R280 and R277.
Then TR109/110 will turn off. After about 1 second, TR203 will turn on.
And +19.3 V DC at emitter voltage of TR203 will apply to the gate of TR109/110 via R277.
This turns TR109/110 "on", and then the drain and source of TR109/110 will be conducted and signal is present at the OUTPUT terminal.
When the power switch is "off", TR204 is activated and the minus DC voltage will be applied to the gate of TR109/110.
This turns TR109/110 "off". No signal is present at the OUTPUT terminal.

LED METER OPERATING CHART

AC INPUT AT VR101 (Max. CW) mV RMS @ 1 KHz See Note 1.	RECTIFIED DC V AT C207 (-) See Note 2.	LED METER INDICATION	LED METER CURRENT (mA)	VOLTAGE ACROSS EACH LED DC VOLTS See Note 3.
11 mV	-55 mV DC	$-12 \mathrm{~dB}$	3.7 mA	1.9 V DC
18 mV	-83 mV DC	-8dB	3.7 mA	1.9 V DC
29 mV	-126 mV DC	-4 dB	3.7 mA	1.9 V DC
45 mV	-196 mV DC	0 dB	3.7 mA	1.9 V DC
72 mV	-307 mV DC	+4 dB	3.7 mA	1.9 V DC
114 mV	-485 mV DC	$+8 \mathrm{~dB}$	3.7 mA	1.9 V DC
180 mV	-775 mV DC	+12 dB	3.7 mA	1.9 V DC

Rectified DC V and various LED Meter data for actual levels (LED is lit) used for LED Meter indication.

NOTE:

1. AC signal applied to INPUT jacks of Equalizer.

BY-PASS/EQ switch to EQ, METER switch to IN, LINE/REC to REC and MONITOR to OUT.
2. Rectified DC voltages measured from C203(-).
3. Indicated voltages across each LED indicator are obtained with LED Meters calibrated as specified in the CALIBRATION PROCEDURE section of this manual.
4. All DC voltages are within $\pm 10 \%$, measured with an AC VTVM and DV Voltmeter (over $10 \mathrm{~K} \Omega / \mathrm{V}$).

Figure a

BASIC OP. AMP. FEEDBACK CIRCUIT

Figure b

BASIC OP. AMP. RECTIFIER-AMPLIFIER CIRCUIT

Figure c

FREQUENCY EQUALIZATION ACTIVE FILTER CIRCUIT

The basic equivalent circuit into an Active Filter is formed with an LCR series resonant circuit as shown in Figure 1.
The equation for resonant frequency is

$$
\begin{equation*}
F_{0}=\frac{1}{2 \pi \sqrt{L C}} \tag{1}
\end{equation*}
$$

where " F " is a resonant frequency in " Hz ", " L " is the inductance in henries " H ", and " C " is the capacitance in farad " f ".

Figure 1
The Active Filter of this unit consists of IC, Capacitors and Resistors connected to form a resonant circuit at twelve frequencies $(32,56,100,180,320,560,1 \mathrm{KHz}, 1.8 \mathrm{KHz}, 3.2 \mathrm{KHz}, 5.6 \mathrm{KHz}$, 10 KHz and 18 KHz).

Figure 2

A comparison of Figures 1 and 2, with Capacitance (C) and Resistance (R) replacing Inductance (L)

$$
\begin{equation*}
\mathrm{L}=\mathrm{C}_{2} \cdot \mathrm{R}_{1} \cdot \mathrm{R}_{2} \tag{2}
\end{equation*}
$$

According to Eq. 1 and 2,

$$
\begin{aligned}
& F_{0}=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi \sqrt{\left(C_{2} \cdot R_{1} \cdot R_{2}\right) \cdot C_{1}}} \\
& \left(F_{0}: \text { resonant frequency }\right)
\end{aligned}
$$

This is the working equation for each resonant frequency.
The resonant circuit is called a "Simulated Inductor (Semicon-Inductor)", as shown in Figure 2.

For example:

The following shows the resonant frequency at 32 Hz . (Refer to Figure 3.)

According to Eq. 3,

$$
\begin{aligned}
& F_{0}=\frac{1}{2 \pi \sqrt{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}} \\
& F_{0}=\frac{1}{2 \pi \sqrt{4.7 \times 10^{-6} \cdot 0.033 \times 10^{-6} \cdot 352 \times 10^{3} \cdot 470}} \\
& \text { Because: } \quad C_{1}=4.7 \mu \mathrm{f}=4.7 \times 10^{-6}(\mathrm{f}) \\
& \mathrm{C}_{2}=0.033 \mu \mathrm{f}=0.033 \times 10^{-6}(\mathrm{f}) \\
& R_{1}=330 \times 10^{3}+22 \times 10^{3}=352 \times 10^{3}(\mathrm{ohm}) \\
& R_{2}=470(\mathrm{ohm})
\end{aligned} \text { Then, } \quad F_{0}=32(\mathrm{~Hz}) .
$$

NOTE: When VR301 is in the center position, the (+) INPUT and (-) INPUT voltage are the same; thus the output is the same level as the input level.
When VR301 is moved to either side, the output becomes either higher or lower than the input level.

SWITCH FUNCTIONS

(Applicable to LEFT or RIGHT CHANNEL)

(1) LINE/REC Switch - REC Position

BY-PASS/EQ Switch - EQ Position

1 TAPE DUBBING Switch

- SOURCE Position TAPE MONITOR Switch - SOURCE Position SUBSONIC FILTER Switch - IN Position

2 TAPE DUBBING Switch $-1 \rightarrow 2$
TAPE MONITOR Switch - SOURCE Position
SUBSONIC FILTER Switch - IN Position

3 TAPE DUBBING Switch $-2 \rightarrow 1$
TAPE MONITOR Switch - SOURCE Position SUBSONIC FILTER Switch - In Position

4 TAPE DUBBING Switch - SOURCE Position
TAPE MONITOR Switch - 1
SUBSONIC FILTER Switch - IN Position

TAPE in 1

5 TAPE DUBBING Switch - SOURCE Position
TAPE MONITOR Switch - 2
SUBSONIC FILTER Switch - IN Position

TAPE IN 2 O

6 TAPE DUBBING Switch $-1 \rightarrow 2$
TAPE MONITOR Switch - 1
SUBSONIC FILTER Switch - IN Position

7 TAPE DUBBING Switch $-1 \rightarrow 2$
TAPE MONITOR Switch - 2
SUBSONIC FILTER Switch - IN Position

TAPE

8 TAPE DUBBING Switch $-2 \rightarrow 1$
TAPE MONITOR Switch - 1
SUBSONIC FILTER Switch - IN Position

9 TAPE DUBBING Switch $-2 \rightarrow 1$
TAPE MONITOR Switch - 2
SUBSONIC FILTER Switch - IN Position

(2) LINE/REC Switch - LINE Position

BY-PASS/EQ Switch - EQ Position
1 TAPE DUBBING Switch - SOURCE Position
TAPE MONITOR Switch - SOURCE Position
SUBSONIC FILTER Switch - IN Position

$\begin{array}{ll}\text { TAPE DUBBING Switch } & -1 \rightarrow 2 \\ \text { TAPE MONITOR Switch } & - \text { SOURCE Position }\end{array}$
SUBSONIC FILTER Switch - IN Position

3 TAPE DUBBING Switch $-2 \rightarrow 1$
TAPE MONITOR Switch - SOURCE Position
SUBSONIC FILTER Switch - IN Position

TAPE IN $10 \rightarrow \underset{13}{\text { SmI/Sm4 Sle/SIj }}$

5 TAPE DUBBING Switch - SOURCE Position
TAPE MONITOR Switch - 2
SUBSONIC FILTER Switch - IN Position

6 TAPE DUBBING Switch $-1 \rightarrow 2$
TAPE MONITOR Switch - 1
SUBSONIC FILTER Switch - IN Position

7 TAPE DUBBING Switch $-1 \rightarrow 2$
TAPE MONITOR Switch - 2
SUBSONIC FILTER Switch - IN Position

TAPE DUBBING Switch $\quad-2 \rightarrow 1$
TAPE MONITOR Switch - 1
SUBSONIC FILTER Switch - IN Position

9 TAPE DUBBING Switch $-2 \rightarrow 1$
TAPE MONITOR Switch - 2
SUBSONIC FILTER Switch - IN Position

(3) LINE/REC Switch - REC Position BY-PASS/EQ Switch - BY-PASS Position

1 TAPE DUBBING Switch - SOURCE Position
TAPE MONITOR Switch - SOURCE Position

2 TAPE DUBBING Switch $-1 \rightarrow 2$
TAPE MONITOR Switch - SOURCE Position

3 TAPE DUBBING Switch $-2 \rightarrow 1$
TAPE MONITOR Switch - SOURCE Position

4 TAPE DUBBING Switch - SOURCE Position
TAPE MONITOR Switch - 1

TAPE IN IO

5 TAPE DUBBING Switch - SOURCE Position
TAPE MONITOR Switch - 2

6 T APE DUBBING Switch $-1 \rightarrow 2$
TAPE MONITOR Switch - 1

TAPE DUBBING Switch - $1 \rightarrow 2$
TAPE MONITOR Switch - 2

8 TAPE DUBBING Switch $-2 \rightarrow 1$
TAPE MONITOR Switch - 1

9 TAPE DUBBING Switch $-2 \rightarrow 1$
TAPE MONITOR Switch - 2

(4) LINE/REC Switch - LINE Position BY-PASS/EQ Switch - BY-PASS Position

1 TAPE DUBBING Switch - SOURCE Position TAPE MONITOR Switch - SOURCE Position

2 TAPE DUBBING Switch - $1 \rightarrow 2$
TAPE MONITOR Switch - SOURCE Position

3 TAPE DUBBING Switch $-2 \rightarrow 1$
TAPE MONITOR Switch - SOURCE Position

4 TAPE DUBBING Switch - SOURCE Position, $1 \rightarrow 2$ or $2 \rightarrow 1$
TAPE MONITOR Switch - 1

5 TAPE DUBBING Switch - SOURCE Position, $1 \rightarrow 2$ or $2 \rightarrow 1$
TAPE MONITOR Switch - 2

(5)

1 METER/OUT Switch . . . METER Position

 BY-PASS/EQ Switch ... EQ Position

LED Meter indicates signal at Output jack when Meter switch is "in".

2 METER/OUT Switch ... METER Position
BY-PASS/EQ Switch ... BY-PASS Position

When the BY-PASS/EQ Switch is in the "BY-PASS" position, LED Meters indicate at 0 dB points only, regardless of output signal.
NOTE: Right channel LED Meter indicates output of Sound Level Meter when connected to SLM jack. (Meter Switch in either position.)

3 BY-PASS/EQ Switch ... EQ Position

NOTE: When the BY-PASS/EQ Switch is in the "BY-PASS" position, Slide Control Indicator LEDs do not light.
(Slide Control LEDs Switch in either position.)

DISASSEMBLY INSTRUCTIONS

1) To remove the chassis from the metal cabinet
a) Remove three screws that fasten the rear panel to the metal cabinet. (See Figure A)
b) Remove six screws - three from each side of cabinet as shown in Figure B.
2) To remove the bottom plate from the chassis

Remove twelve screws from the bottom as shown in Figure C.
3) To remove the Front Panel
a) Remove the chassis from the metal cabinet as described in 1).
b) Remove the three screws from the top (see Figure D) and three screws from the bottom (see Figure E) of the Front Panel.
c) Remove the knobs and pull the panel off.
4) To remove the Rear Panel

Remove six screws from the Rear Panel. (See Figure F)

Figure A

BLOCK DIAGRAM

LED METER CALIBRATION PROCEDURE

Connect LED meter calibration set-up as shown in Figure 1.

CALIBRATOR:
AC VOLTMETER:
AUDIO GENERATOR:

OFF
0.3 V Range

Frequency -1 KHz
OUTPUT - 1.5 V min. into ext. 600Ω load.
INT/EXT LOAD SWITCH (if any) - EXT. (Calibrator box provides approximately 600Ω load to generator).
FREQUENCY EQUALIZER: Frequency Control - Flat position
METER switch - IN
BY-PASS/EQ - EQ
TAPE MONITOR/DUBBING Switch: SOURCE
LINE/REC - REC
METER CONTROL: Left (VR101) - Max. counterclockwise
Right (VR102) - Max. clockwise
VR103, 104 - Max. toward (+)
LEVEL CONTROL:

CALIBRATION PROCEDURE

Step 1. Set Trimmer Resistors on PCB as indicated below:
VR201(L), VR202(R) : at 12 o'clock position
VR203(L), VR204(R) : at 12 o'clock position
Step 2. Adjust audio generator output for 180 mV as read on AC voltmeter.
Step 3. Set Calibrator at 0 dB . Adjust VR201 (left) for 12 dB on left LED Meter. And VR202 (right) for 12 dB on right LED Meter. (All LED's are lit.) (Figure 1A)
Step 4. Set Calibrator at -1 dB point, check both 12 dB (left and right) LED's are turned off. (Figure 1B)
Step 5. Set Calibrator at -24 dB point. Adjust VR203 (Left) for $\mathbf{- 1 2 ~ d B ~ o n ~ l e f t ~ L E D ~ M e t e r . ~}$ And VR204 (Right) for $\mathbf{- 1 2 ~ d B ~ o n ~ r i g h t ~ L E D ~ M e t e r . ~}$ Both LED's should be lit. (Figure 1C)
Step 6. Set Calibrator at -25 dB point, check that both -12 dB on left and right LED have turned off. (Figure 1D)
Step 7. Repeat Steps 3 through 6 for optimum performance.
Step 8. Set Calibrator at -12 dB point.
Check for both 0 dB points. Left and right LEDs are lit. (Figure 1E)
Step 9. Set Calibrator at -13 dB point. Check for both 0 dB points. Left and right LEDs have turned off. (Figure 1F)
NOTE: Refer to Check Point for each LED Meter below:

CHECK POINT FOR EACH LED METERS (See Figure 2 and Figure 2A through 2F.)

LED meter point	-12 dB	-8 dB	-4 dB	0 dB	+4 dB	+8 dB	+12 dB
Calibrator position for each LED that is lit.	-24 dB	-20 dB	-16 dB	-12 dB	-8 dB	-4 dB	0 dB
Calibrator position for each LED that is not lit.	-25 dB	-21 dB	-17 dB	-13 dB	-9 dB	-5 dB	-1 dB

NOTE: OUTPUT TERMINAL ON SET SHOULD CONNECT TO A $10 \mathrm{~K} \Omega$ LOAD.
Figure 1

Figure 1A

Figure 1B

Figure 1C

Figure 1E

Figure 1D

Figure 1F

METER POWER SUPPLY

CALIBRATION SCHEMATIC

IC INTERNAL DIAGRAM

NJM-4558 BLOCK DIAGRAM
NJM-4560
TL-4558

IC \& TRANSISTOR LEAD IDENTIFICATIONS

TROUBLESHOOTING

Symptom	Cause/Remedy
1) No output	1) Faulty $A C$ power cord * Replace the cord. 2) Defective power switch * Replace the switch. 3) Broken wire in the power transformer * Replace the transformer. 4) Check Fuse European and PX only.
2) Power indicator LED does not light.	1) Defective LED D601 * Replace the LED. 2) Open in the power transformer secondary winding * Replace the transformer. 3) Check Fuse European and PX only.
3) Power indicator LED lights but no output.	1) Defective Diode D227 * Replace the defective diode. 2) Defective transistor TR201 and/or TR202 * Replace the defective transistor(s).
4) No output with test signal applied to the input terminals.	1) Defective transistor TR101-110 * Replace the defective transistor(s). 2) Defective resistor or capacitor of MAIN AMP board * Replace the defective part(s).
5) Frequency control " 32 Hz " has no effect.	1) Faulty VR301/401 * Repair or replace. 2) Defective IC301/401, R301/401, R302/402, R303/403, C301/ 401 or C302/402 * Replace the defective part(s).
6) Frequency control " 56 Hz " has no effect.	1) Faulty VR302/402 * Repair or replace. 2) Defective IC302/402, R304/404, R305/405, C303/403, C304/ 404, C305/405 * Replace the defective part(s).
7) Frequency control " $100 \mathrm{~Hz}^{\prime \prime}$ has no effect.	1) Faulty VR303/403 * Repair or replace. 2) Defective IC303/403, R306/406, R307/407, R308/408, C306/ 406, C307/407 * Replace the defective part(s).
8) Frequency control " 180 Hz " has no effect.	1) Faulty VR304/404 * Repair or replace. 2) Defective IC304/404, R309/409, R310/410, C308/408, C309/ 409, C310/410 * Replace the defective part(s).
9) Frequency control " $320 \mathrm{~Hz}^{\prime \prime}$ has no effect.	1) Faulty VR305/405 * Repair or replace. 2) Defective IC305/405, R311/411, R312/412, C311/411, C312/ 412 * Replace the defective part(s).

Symptom	Cause/Remedy
10) Frequency control " 560 Hz " has no effect.	1) Faulty VR306/406 * Repair or replace. 2) Defective IC306/406, R313/413, R314/414, C313/413, C314/ 414 * Replace defective part(s).
11) Frequency control " 1 KHz " has no effect.	1) Faulty VR307/407 * Repair or replace. 2) Defective IC306/406, R315/415, R316/416, R317/417, R318/ $418, \text { C315/415, C316/416 }$ * Repair defective part(s).
12) Frequency control " 1.8 KHz " has no effect.	1) Faulty VR308/408 * Repair or replace. 2) Defective IC305/405, R319/419, R320/420, R321/421, R322/ 422 * Replace the defective part(s).
13) Frequency control " 3.2 KHz " has no effect.	1) Faulty VR309/409 * Repair or replace. 2) Defective IC304/404, R323/423, R324/424, R325/425, C319/ 419, C320/420 * Replace defective part(s).
14) Frequency control " $5.6 \mathrm{KHz}^{\prime \prime}$ has no effect.	1) Faulty VR310/410 * Repair or replace. 2) Defective IC303/403, R326/426, R327/427, R328/428, C321/ 421, C322/422 * Replace defective part(s).
15) Frequency control " 10 KHz " has no effect.	1) Faulty VR311/411 * Repair or replace. 2) Defective IC302/402, R329/429, R330/430, R331/431, C323/ 423, C324/424 * Replace defective part(s).
16) Frequency control " 18 KHz " has no effect.	1) Faulty VR312/412 * Repair or replace. 2) Defective IC301/401, R332/432, R333/433, R334/434, C325/ 425, C326/426 * Replace defective part(s).
17) All controls have no effect.	1) Defective Resistor R135/136 or R141/142 * Replace the defective resistor(s). 2) Defective IC(s) IC102 and Transistor(s) TR103-110 * Replace the defective transistor(s).
18) LED Meter does not light up.	1) Defective IC201 * Replace the IC. 2) Defective IC202-208 * Replace the IC(s). 3) Defective LED D501-514 * Replace the LED(s).

Symptom	Cause/Remedy
19) "OUTPUT" inoperative	1) Poor contact in "OUTPUT" jack * Repair or replace.
20) "INPUT" inoperative	1) Poor contact in "INPUT" jack * Repair or replace.
21) "TAPE IN 1" inoperative	1) Poor contact in "TAPE IN 1" jack * Repair or replace. 2)
* Faulty TAPE MONITOR/DUBBING switch	

AMP \& POWER SUPPLY P.C.B.

TOP VIEW

BOTTOM VIEW

VOLUME P.C.B.

TOP VIEW

FILTER P.C.B.

TOP VIEW

BOTTOM VIEW

LED P.C.B.

TOP VIEW

BOTTOM VIEW

CAPACITORS						
REF. NO.	Value (F)	Voltage (V)	Tolerance (\%)	Material	BSR/ADC PART NO.	MFR'S PART NO.
C101/102	2.2μ	50/35	± 10	Electrolytic	31-25-1202	
C103/104	100 p	50	± 5	Ceramic	31-25-1069	
C105/106	0.15μ	50	± 10	Mylar	31-25-1082	
C107/108	0.1μ	50	± 10	Mylar	31-25-1099	
C109/110	0.1μ	50	± 10	Mylar	31-25-1099	
C111/112	2.2μ	50/35	± 10	Electrolytic	31-25-1202	
C113/114	2.2μ	50/35	± 10	Electrolytic	31-25-1202	
C115/116	330 p	50	± 5	Ceramic	31-25-1367	
C117/118	33μ	25	+50/-10	Electrolytic	31-25-1060	
C119/120	150 p	50	± 5	Ceramic	31-25-1368	
C121/122	150 p	50	± 5	Ceramic	31-25-1368	
C123/124	22μ	16	+50/-10	Electrolytic	31-25-1372	
C125/126	470 p	50	± 5	Ceramic	31-25-1302	
C127/128	22μ	16	+50/-10	Electrolytic	31-25-1372	
C129/130	33μ	16	+50/-10	Electrolytic	31-25-1373	
C131	0.047μ	50	+80/-20	Ceramic	31-25-1366	
C201/202	4.7μ	35	+50/-10	Electrolytic	31-25-1363	
C203/204	10μ	25	+50/-10	Electrolytic	31-25-1208	
C205/206	0.047μ	50	+80/-20	Ceramic	31-25-1366	
C207	47μ	10	+50/-10	Electrolytic	31-25-1073	
C208/209	220μ	25	+50/-10	Electrolytic	31-25-1221	
C210/211	220μ	25	+50/-10	Electrolytic	31-25-1221	
C212/213	220μ	35	+50/-10	Electrolytic	31-25-1221	
C214	220μ	35	+50/-10	Electrolytic	31-25-1221	
C215	470μ	35	+50/-10	Electrolytic	31-25-1359	
C216/217	10μ	35	+50/-10	Electrolytic	31-25-1207	
C218	4.7μ	50	+50/-10	Electrolytic	31-25-1363	
C219	3.3μ	50	+75/-10	Electrolytic	31-25-1374	
C301/401	0.033μ	50	± 5	Mylar	31-25-1389	
C302/402	4.7μ	50	± 10	Electrolytic	31-25-1363	
C303/403	0.022μ	50	± 5	Mylar	31-25-1387	
C304/404	2.2μ	50	± 10	Electrolytic	31-25-1202	
C305/405	0.47μ	50	± 10	Electrolytic	31-25-1080	
C306/406	0.012μ	50	± 5	Mylar	31-25-1392	
C307/407	1.5μ	50	± 10	Electrolytic	31-25-1339	
C308/408	0.0068μ	50	± 5	Mylar	31-25-1397	
C309/409	0.68μ	50	± 10	Electrolytic	31-25-1201	
C310/410	0.12μ	50	± 5	Mylar	31-25-1100	
C311/411	0.0039μ	50	± 5	Mylar	31-25-1386	
C312/412	0.47μ	50	± 10	Electrolytic	31-25-1080	
C313/413	0.0022μ	50	± 5	Mylar	31-25-1456	
C314/414	0.27μ	50	± 5	Mylar	31-25-1393	
C315/415	0.0012μ	50	± 5	Mylar	31-25-1081	
C316/416	0.15μ	50	± 5	Mylar	31-25-1082	
C317/417	680 p	50	± 5	Polystyrene	31-25-1576	
C318/418	0.082μ	50	± 5	Mylar	31-25-1378	
C319/419	390 p	50	± 5	Polystyrene	31-25-1578	
C320/420	0.047μ	50	± 5	Mylar	31-25-1084	
C321/421	220 p	50	± 5	Polystyrene	31-25-1338	

REF. NO.	Value (F)	Voltage (V)	Tolerance (\%)	Material		$\begin{aligned} & \text { BSR/ADC } \\ & \text { PART NO. } \end{aligned}$		MFR'S PART NO.
C322/422	0.027μ	50	± 5	Mylar		31-25-1385		
C323/423	120 p	50	± 5	Polystyrene		31-25-1579		
C324/424	0.015μ	50	± 5	Mylar		31-25-1086		
C325/425	100 p	50	± 5	Polystyrene		31-25-1580		
C326/426	0.0082μ	50	± 5	Mylar		31-25-1087		
C327/427	22μ	25	+50/-10	Electrolytic		31-25-1219		
C328/428	22μ	25	+50/-10	Electrolytic		31-25-1219		
C329/429	0.047μ	50	+80/-20	Ceramic		31-25-1366		
C330/430	0.047μ	50	+80/-20	Ceramic		31-25-1366		
C601	$\begin{gathered} 0.01 \mu \\ \text { (MY type) } \end{gathered}$	125 (USA, Canad	$+80 /-20$ an)	Ceramic		31-25-1066		$\begin{aligned} & \text { P-220044 or } \\ & \text { P-220092 } \end{aligned}$
	$\begin{gathered} 0.01 \mu \\ \text { (X type) (P) } \end{gathered}$	250	+80/-20	Ceramic		31-25-1002		P-220022
	$\begin{gathered} 0.01 \mu \\ \text { (PME } 265 \text { t) } \end{gathered}$	$\begin{aligned} & 250 \\ & \text { type) (Europe } \end{aligned}$	$+80 /-20$ an)	Ceramic		31-25-1066		P-220068
	0.01μ	50	+80/-20	Ceramic		31-25-1096		
DIODES								
REF. NO.	DESCRIPTION				BSR/ADC PART NO.		MANUFACTURER	
D101/102	Si Diode	$\begin{aligned} & \text { ITT-73N or } \\ & \text { 1N-4148 } \end{aligned}$			$\begin{aligned} & 31-53-1080 \text { or } \\ & 31-53-1057 \end{aligned}$		ITT or PHILIPS	
D103/104	Si Diode	$\begin{aligned} & \text { ITT-73N or } \\ & \text { 1N-4148 } \end{aligned}$		$\begin{aligned} & 31-53-1080 \text { or } \\ & 31-53-1057 \end{aligned}$			$\begin{aligned} & \text { ITT or } \\ & \text { PHILIPS } \end{aligned}$	
D201/202	Si Diode	ITT-73N or 1N-4148			$\begin{aligned} & 31-53-1080 \text { or } \\ & 31-53-1057 \end{aligned}$		ITT or PHILIPS	
D203/204	Si Diode	ITT-73N or			$\begin{aligned} & 31-53-1080 \text { or } \\ & 31-53-1057 \end{aligned}$		ITT or PHILIPS	
D205/206	Si Diode	ITT-73N or			31-53-1080 or		ITT or	
D207/208	Si Diode	ITT-73N or			31-53-1080 or		ITT or	
		1N-4148				1057	PHIL	
D209/210	Si Diode	ITT-73N or			31-53-1080 or		ITT or	
		1N-4148				1057	PHIL	
D211/212	Si Diode	ITT-73N or			31-53-1080 or		ITT or	
		1N-4148				1057	PHIL	
D213/214	Si Diode	ITT-73N or			31-53-1080 or		ITT or	
		1N-4148				1057	PHIL	
D215/216	Si Diode	ITT-73N			31-53-1080 or		ITT or	
		1N-4148			$\begin{aligned} & 31-53-1057 \\ & 31-53-1080 \text { or } \end{aligned}$		PHILIPS	
D217/218	Si Diode	ITT-73N or1N-4148					ITT orPHILIPS	
					$\begin{aligned} & 31-53-1080 \text { or } \\ & 31-53-1057 \end{aligned}$			
D219/220	Si Diode	ITT-73N or			31-53-1080 or		ITT or	
		$1 \mathrm{~N}-4148$			31-53-1057		PHILIPS	
D221/222	Si Diode	ITT-73N or1N-4148			$\begin{aligned} & 31-53-1080 \text { or } \\ & 31-53-1057 \end{aligned}$		ITT or PHILIPS	
D223	Zener Diode	WZ-056 or HZ-6B1			31-53-1064		JRC or HITACHI	
D224/225	Zener Diode Si Diode	WZ-182			31-53-1134		JRC	
D226		$\begin{aligned} & \text { ITT-73N or } \\ & \text { 1N-4148 } \end{aligned}$			$\begin{aligned} & 31-53-1080 \text { or } \\ & 31-53-1057 \end{aligned}$		ITT or PHILIPS	

REF. NO.		DESCRIPTION	$\begin{aligned} & \text { BSR/ADC } \\ & \text { PART NO. } \end{aligned}$	MANUFACTURER	
D227	Si Diode	SVB-10-200 (Bridge type)	31-53-1063	UNIZON	
IC's					
REF. NO.	DESCRIPTION		$\begin{aligned} & \text { BSR/ADC } \\ & \text { PART NO. } \end{aligned}$	MANUFACTURER	
IC101/102	IC NJM	NJM4558DX or TL4558PB	31-54-1455	JRC or TI	
IC201	IC NJM	NJM4560D	31-54-1454	JRC	
IC202/203	IC NJM	NJM4558DM or TL4558PB	31-54-1453		
IC204/205	IC NJM	NJM4558DM or TL4558PB	31-54-1453	JRC or TI	
IC206/207	IC NJM	NJM4558DM or TL4558PB	31-54-1453	JRC or TI	
IC208	IC NJM	NJM4558DM or TL4558PB	31-54-1453	JRC or TI	
IC301/401	IC NJM	NJM4558D or TL4558PA	31-54-1452	JRC or TI	
IC302/402	IC NJM	558D or TL4558PA	31-54-1452	JRC or TI	
IC303/403	IC NJM	558D or TL4558PA	31-54-1452	JRC or TI	
IC304/404	IC NJM	558D or TL4558PA	31-54-1452	JRC or TI	
IC305/405	IC NJM	NJM4558D or TL4558PA NJM4558D or TL4558PA	31-54-1452	JRC or TI	
IC306/406	IC NJM		31-54-1452	JRC	TI
LED's					
REF. NO.		DESCRIPTION	$\begin{aligned} & \text { BSR/ADC } \\ & \text { PART NO. } \end{aligned}$	MANUFACTURER	
D501/502	LED SLP	SLP151B (red)	31-53-1096	SANYO	
D503/504	LED SLP	SLP151B (red)	31-53-1096	SANYO	
D505/506	LED SLP	SLP151B (red)	31-53-1096	SANYO	
D507/508	LED SLP	SLP151B (red)	31-53-1096	SANYO	
D509/510	LED SLP	SLP151B (red)	31-53-1096	SANYO	
D511/512	LED SLP	SLP151B (red)	31-53-1096	SANYO	
D513/514	LED SLP	SLP151B (red)	31-53-1096	SANYO	
D301/401	LED PR503	PR503K-5 (red)	31-53-1077	STANLEY	
D302/402	PR503K-5 (red)		31-53-1077	STANLEY	
D303/403	LED PR503	PR503K-5 (red)	31-53-1077	STANLEY	
D304/404	LED PR503	PR503K-5 (red)	31-53-1077	STANLEY	
D305/405	LED PR503	PR503K-5 (red)	31-53-1077	STANLEY	
D306/406	PR503K-5 (red)		31-53-1077	STANLEY	
D307/407	LED PR503	PR503K-5 (red)	31-53-1077	STANLEY	
D308/408	LED PR503	PR503K-5 (red)	31-53-1077	STANLEY	
D309/409	LED PR503	PR503K-5 (red)	31-53-1077	STANLEY	
D310/410	LED PR503	PR503K-5 (red)	31-53-1077	STANLEY	
D311/411	LED PR503	PR503K-5 (red)	$\begin{aligned} & 31-53-1077 \\ & 31-53-1077 \end{aligned}$	STANLEY STANLEY	
D312/412	LED PR503	K-5 (red)			
D601	LED LT-2	LT-201 (red)	31-53-1066	LITON	
FUSES					
REF. NO.	DESCRIPTION		$\begin{aligned} & \text { BSR/ADC } \\ & \text { PART NO. } \end{aligned}$		MFR'S PART NO.
	Midget Fuse	$400 \mathrm{mAT}, 250 \mathrm{~V}$ (European)	31-22-1421		P-250085

REF. ${ }^{\text {NO. }}$	DESCRIPTION				BSR/ADC PART NO.	MFR'S PART NO.
	Fuse $\quad 0.5 \mathrm{~A}, 250 \mathrm{~V}(\mathrm{PX})$				31-22-1410	P-250081
TRANSFORMERS						
REF. ${ }^{\text {NO. }}$	DESCRIPTION				BSR/ADC PART NO.	MFR'S PART NO.
$\begin{gathered} \text { T601 } \\ \text { T601 } \\ \text { T601 } \end{gathered}$	Power Transformer 120 V, 60 Hz (USA, Canadian) Power Transformer $230 \mathrm{~V}, 50 \mathrm{~Hz}$ (European) Power Transformer 100/120/220/240 V, 50/60 Hz (PX)				$\begin{aligned} & 31-27-1048 \\ & 31-27-1049 \\ & 31-27-1050 \end{aligned}$	P-100839 or P-100842 P-100840 or P-100843 P-100841 or P-100844
RESISTORS						
REF. ${ }^{\text {NO. }}$	Value (Ω)	Wattage (W)	Tolerance (\%)	Material	BSR/ADC PART NO.	MFR'S PART NO.
R101/102	470 K	$1 / 4$	± 5	Carbon	31-23-1001-474	
R103/104	470 K	$1 / 4$	± 5	Carbon	31-23-1001-474	
R105/106	47 K	$1 / 4$	± 5	Carbon	31-23-1001-473	
R107/108	1 K	$1 / 4$	± 5	Carbon	31-23-1001-102	
R109/110	220 K	$1 / 4$	± 5	Carbon	31-23-1001-224	
R111/112	220 K	$1 / 4$	± 5	Carbon	31-23-1001-224	
R113/114	270 K	$1 / 4$	± 5	Carbon	31-23-1001-274	
R115/116	3.3 K	$1 / 4$	± 5	Carbon	31-23-1001-332	
R117/118	220	$1 / 4$	± 5	Carbon	31-23-1001-221	
R119/120	47 K	$1 / 4$	± 5	Carbon	31-23-1001-473	
R121/122	24 K	$1 / 4$	± 5	Carbon	31-23-1001-243	
R123/124	560 K	$1 / 4$	± 5	Carbon	31-23-1001-564	
R125/126	10 K	$1 / 4$	± 5	Carbon	31-23-1001-103	
R127/128	1 K	$1 / 4$	± 5	Carbon	31-23-1001-102	
R129/130	220 K	$1 / 4$	± 5	Carbon	31-23-1001-224	
R131/132	470 K	1/4	± 5	Carbon	31-23-1001-474	
R133/134	1.8 K	1/4	± 5	Carbon	31-23-1001-182	
R135/136	3 K	$1 / 4$	± 5	Carbon	31-23-1001-302	
R137/โ38	470 K	$1 / 4$	± 5	Carbon	31-23-1001-474	
R139/140	470 K	$1 / 4$	± 5	Carbon	31-23-1001-474	
R141/142	3 K	$1 / 4$	± 5	Carbon	31-23-1001-302	
R143/144	560	$1 / 4$	± 5	Carbon	31-23-1001-561	
R145/146	100 K	$1 / 4$	± 5	Carbon	31-23-1001-104	
R147/148	100 K	$1 / 4$	± 5	Carbon	31-23-1001-104	
R149/150	680	$1 / 4$	± 5	Carbon	31-23-1001-681	
R151/152	680	$1 / 4$	± 5	Carbon	31-23-1001-681	
R153/154	100 K	$1 / 4$	± 5	Carbon	31-23-1001-104	
R155/156	22	$1 / 4$	± 5	Carbon	31-23-1001-220	
R157/158	22	$1 / 4$	± 5	Carbon	31-23-1001-220	
R159/160	82	$1 / 4$	± 5	Carbon	31-23-1001-820	
R161/162	10 K	$1 / 4$	± 5	Carbon	31-23-1001-103	
R163/164	3.3 M	$1 / 4$	± 5	Carbon	31-23-1001-335	
R201/202	33 K	$1 / 4$	± 5	Carbon	31-23-1001-333	
R203/204	100 K	$1 / 4$	± 5	Carbon	31-23-1001-104	
R205/206	100 K	$1 / 4$	± 5	Carbon	31-23-1001-104	

REF. NO.	Value (Ω)	Wattage (W)	Tolerance (\%)	Material	BSR/ADC PART NO.	MFR'S PART NO.
R207/208	10 K	$1 / 4$	± 5	Carbon	31-23-1001-103	
R209	3.3 K	$1 / 4$	± 5	Carbon	31-23-1001-332	
R210	47 K	$1 / 4$	± 5	Carbon	31-23-1001-473	
R211/212	1 K	$1 / 4$	± 5	Carbon	31-23-1001-102	
R213/214	3.3 M	$1 / 4$	± 5	Carbon	31-23-1001-335	
R215/216	2.7 K	$1 / 4$	± 5	Carbon	31-23-1001-272	
R217/218	3 K	$1 / 4$	± 5	Carbon	31-23-1001-302	
R219/220	1 K	$1 / 4$	± 5	Carbon	31-23-1001-102	
R221/222	3.3 M	$1 / 4$	± 5	Carbon	31-23-1001-335	
R223/224	2.7 K	$1 / 4$	± 5	Carbon	31-23-1001-272	
R225/226	1.8 K	$1 / 4$	± 5	Carbon	31-23-1001-182	
R227/228	1 K	$1 / 4$	± 5	Carbon	31-23-1001-102	
R229/230	3.3 M	$1 / 4$	± 5	Carbon	31-23-1001-335	
R231/232	2.7 K	$1 / 4$	± 5	Carbon	31-23-1001-272	
R233/234	1 K	$1 / 4$	± 5	Carbon	31-23-1001-102	
R235/236	1 K	$1 / 4$	± 5	Carbon	31-23-1001-102	
R237/238	3.3 M	$1 / 4$	± 5	Carbon	31-23-1001-335	
R239/240	2.7 K	$1 / 4$	± 5	Carbon	31-23-1001-272	
R241/242	680	$1 / 4$	± 5	Carbon	31-23-1001-681	
R243/244	1 K	$1 / 4$	± 5	Carbon	31-23-1001-102	
R245/246	3.3 M	$1 / 4$	± 5	Carbon	31-23-1001-335	
R247/248	2.7 K	$1 / 4$	± 5	Carbon	31-23-1001-272	
R249/250	390	$1 / 4$	± 5	Carbon	31-23-1001-391	
R251/252	1 K	$1 / 4$	± 5	Carbon	31-23-1001-102	
R253/254	3.3 M	$1 / 4$	± 5	Carbon	31-23-1001-335	
R255/256	2.7 K	$1 / 4$	± 5	Carbon	31-23-1001-272	
R257/258	220	$1 / 4$	± 5	Carbon	31-23-1001-221	
R259/260	1 K	$1 / 4$	± 5	Carbon	31-23-1001-102	
R261/262	3.3 M	$1 / 4$	± 5	Carbon	31-23-1001-335	
R263/264	2.7 K	$1 / 4$	± 5	Carbon	31-23-1001-272	
R265/266	47 K	$1 / 4$	± 5	Carbon	31-23-1001-473	
R267	150	2	± 5	Metal Oxide	31-23-1004-151	
R268	100	2	± 5	Metal Oxide	31-23-1004-101	
R269/270	1.2 K	$1 / 4$	± 5	Carbon	31-23-1001-122	
R271/272	33	3	± 5	Metal Oxide	31-23-1005-330	
R273	1.2 K	$1 / 4$	± 5	Carbon	31-23-1001-122	
R274/275	390	$1 / 4$	± 5	Carbon	31-23-1001-391	
R276	8.2 K	1/4	± 5	Carbon	31-23-1001-822	
R277	3.3 M	$1 / 4$	± 5	Carbon	31-23-1001-335	
R278	220 K	$1 / 4$	± 5	Carbon	31-23-1001-224	
R279	4.7 K	$1 / 4$	± 5	Carbon	31-23-1001-472	
R280/281	47 K	$1 / 4$	± 5	Carbon	31-23-1001-473	
R282	100 K	1/4	± 5	Carbon	31-23-1001-104	
R301/401	330 K	$1 / 4$	± 2	Carbon	31-23-1006-334	
R302/402	22 K	$1 / 4$	± 5	Carbon	31-23-1001-223	
R303/403	470	$1 / 4$	± 2	Carbon	31-23-1006-471	
R304/404	330 K	$1 / 4$	± 2	Carbon	31-23-1006-334	
R305/405	430	$1 / 4$	± 2	Carbon	31-23-1006-431	
R306/406	300 K	$1 / 4$	± 2	Carbon	31-23-1006-304	
R307/407	390	1/4	± 2	Carbon	31-23-1006-391	
R308/408	15	$1 / 4$	± 5	Carbon	31-23-1001-150	
R309/409	360 K	1/4	± 2	Carbon	31-23-1006-364	
R310/410	390	1/4	± 2	Carbon	31-23-1006-391	

REF. ${ }^{\text {NO. }}$	Value (Ω)	Wattage (W)	Tolerance (\%)	Materia	BSR/ PAR	ADC	MFR'S PART NO.
R311/411	390 K	$1 / 4$	± 2	Carbon	31-23-1	06-394	
R312/412	360	$1 / 4$	± 2	Carbon	31-23-1	06-361	
R313/413	300 K	$1 / 4$	± 2	Carbon	31-23-1	06-304	
R314/414	430	$1 / 4$	± 2	Carbon	31-23-1	06-431	
R315/415	330 K	$1 / 4$	± 2	Carbon	31-23-1	06-334	
R316/416	22 K	$1 / 4$	± 5	Carbon	31-23-1	001-223	
R317/417	390	$1 / 4$	± 2	Carbon	31-23-1	06-391	
R318/418	24	$1 / 4$	± 5	Carbon	31-23-1	01-240	
R319/419	330 K	$1 / 4$	± 2	Carbon	31-23-1	06-334	
R320/420	22 K	$1 / 4$	± 5	Carbon	31-23-1	01-223	
R321/421	390	$1 / 4$	± 2	Carbon	31-23-1	06-391	
R322/422	22	$1 / 4$	± 5	Carbon	31-23-1	001-220	
R323/423	330 K	$1 / 4$	± 2	Carbon	31-23-1	06-334	
R324/424	390	1/4	± 2	Carbon	31-23-1	006-391	
R325/425	33	$1 / 4$	± 5	Carbon	31-23-1	001-330	
R326/426	330 K	$1 / 4$	± 2	Carbon	31-23-1	006-334	
R327/427	390	$1 / 4$	± 2	Carbon	31-23-1	006-391	
R328/428	33	$1 / 4$	± 5	Carbon	31-23-1	001-330	
R329/429	330 K	$1 / 4$	± 2	Carbon	31-23-1	006-334	
R330/430	390	$1 / 4$	± 2	Carbon	31-23-1	006-391	
R331/431	33	$1 / 4$	± 5	Carbon	31-23-1	001-330	
R332/432	240 K	$1 / 4$	± 2	Carbon	31-23-1	006-244	
R333/433	390	$1 / 4$	± 2	Carbon	31-23-1	06-391	
R334/434	22	$1 / 4$	± 5	Carbon	31-23-1	001-220	
R335/435	56	1/4	± 5	Carbon	31-23-1	001-560	
R336/436	56	1/4	± 5	Carbon	31-23-1	001-560	
SWITCHES							
REF.NO.	DESCRIPTION				BSR/ADC PART NO.		MFR'S PART NO.
Sd1-Sd8	Tape Dubbing Switch Tape Monitor Switch LINE/REC Switch EQ/BY-PASS Switch METER/OUT Switch SUBSONIC Filter IN/OUT Switch Power Switch (USA, Canadian PX) Power Switch (European) Voltage Selector Switch (PX)				$\begin{aligned} & 31-16-1062 \\ & 31-16-1063 \\ & 31-16-1061 \\ & 31-16-1061 \\ & 31-16-1061 \\ & 31-16-1061 \end{aligned}$		
Sm1-Sm6							P-180540
S1a-S1j							P-180538
S2a-S2j							P-180538
S3a-S3b							P-180538
S4a-S4b							P-180538
S601					$\begin{aligned} & 31-16-1005 \\ & 31-16-1006 \end{aligned}$		P-180382
S601							P-180383
					31-1	-1046	P-180537
TRANSFORMERS							
REF. NO.	DESCRIPTION				$\begin{aligned} & \text { BSR/ADC } \\ & \text { PART NO. } \end{aligned}$	MANUFACTURER	
TR101/102	2SC1313G, 2SC1222(E,F) or 2SC1843(E,F)				31-53-1083	MITSUBISHI or NEC	
TR103/104	2SC1313G, 2SC1222(E,F) or 2SC1843(E,F)				31-53-1083	MITSU	BISHI or NEC
TR105/106	2SC1313G, 2SC1222(E) or 2SC1843(E)				31-53-1083	MITSU	BISHI or NEC
TR107/108	2SA750(E) or 2SA990(E) or 2SA992(F)				31-53-1073	NEC	
TR109/110	FET 2SK30A(GR) or 2SK246(GR)				31-53-1091	TOSHI	

REF. NO.		ESCRIPTION	BSR/ADC PART NO.	MANUFACTURER	
$\begin{aligned} & \hline \text { TR201 } \\ & \text { TR202 } \\ & \text { TR202/204 } \end{aligned}$	$\begin{aligned} & \text { 2SD600(D,E) } \\ & \text { 2SB631(D,E) } \\ & \text { 2SC1313G, 2SC1222(E,F) or } 2 S C 1843(E, F) \end{aligned}$		$\begin{aligned} & 31-53-1072 \\ & 31-53-1074 \\ & 31-53-1083 \end{aligned}$	SANYO SANYO MITSUBISHI or NEC	
VARIABLE RESISTORS					
REF. NO.	DESCRIPTION		BSR/ADC PART NO.		MFR'S PART NO.
VR101/102	Potentiometer	$50 \mathrm{~K} \Omega \mathrm{~B}$	$\begin{aligned} & 31-16-1064 \\ & 31-16-1013 \end{aligned}$		P-171446
VR103/104	Potentiometer	$10 \mathrm{~K} \Omega 3 \mathrm{~B}$			P-170481
VR201/202	Trimmer	$100 \mathrm{~K} \Omega \mathrm{~B}$	$31-16-1054$$31-16-1055$		P-170516
VR203/204	Trimmer	$1 \mathrm{~K} \Omega \mathrm{~B}$			P-170510
$\begin{gathered} \text { VR301- } \\ \text { VR312 } \end{gathered}$	Potentiometer (Gain Control) $50 \mathrm{~K} \Omega 5 \mathrm{~B}$ or $50 \mathrm{~K} \Omega \mathrm{SW}$		31-21-1007		$\begin{aligned} & \text { P-171326 or } \\ & \text { P-171327 } \end{aligned}$
VR401-	Potentiometer (Gain Control) $50 \mathrm{~K} \Omega 5 \mathrm{~B}$ or $50 \mathrm{~K} \Omega \mathrm{SW}$			31-21-1007	$\begin{aligned} & \text { P-171326 or } \\ & \text { P-171327 } \end{aligned}$

EXPLODED VIEW PARTS LIST

REF. NO.	DESCRIPTION	BSR/ADC PART NO.	MFR'S PART NO.
1	AMP Assembled P.C.B.	31-17-1449	U-23188
2	CONTROL Assembled P.C.B.	31-17-1450	U-23189
3	P.C.B. Holder	31-13-1094	P-610885
4	LED Assembled P.C.B.	31-17-1826	U-25206
5	Front Chassis Ass'y	31-13-1266	P-400334
	Consisting of Front Chassis	31-13-1268	P-400333
	Headphone Holder	31-13-1099	P-412419
6	Side Chassis (L)	31-14-1263	P-400336
7	Side Chassis (R)	31-14-1264	P-400335
8	Spacer	31-14-1265	P-680305
9	Back Panel (U.S.A.)	31-14-1259	P-412410
	Back Panel (Canadian)	31-14-1260	P-412411
	Back Panel (European)	31-14-1261	P-412412
	Back Panel (PX)	31-14-1262	P-412413
10	6P RCA Jack	31-18-1011	P-320151
11	AC Outlet (U.S.A., PX)	31-18-1005	$\begin{aligned} & \text { P-190157 or } \\ & \text { P-190098 } \end{aligned}$
	AC Outlet (Canadian)	31-18-1006	$\begin{aligned} & \text { P-190157 or } \\ & \text { P-190324 } \end{aligned}$
12	Voltage Selector Switch (PX)	31-16-1046	P-180537
13	AC Cord (U.S.A., Canadian)	31-46-1020	P-310115
	AC Cord (European)	31-46-1018	P-310105
	AC Cord (PX)	31-46-1019	P-310106
14	AC Cord Strain Relief (U.S.A., PX, Canadian)	31-13-1251	P-480010
	AC Cord Strain Relief (European)	31-13-1066	P-480080
15	Fuse Holder (PX)	31-18-1954	P-260016
16	Fuse 250 V 0.2 A Quick (PX)	31-22-1410	P-250081
17	Midget Fuse (European)	31-22-1421	P-250085
18	Line Pass Capacitor (MY Type) (U.S.A., Canadian)	31-25-1025	$\begin{aligned} & \text { P-220044 or } \\ & \text { P-220092 } \end{aligned}$
	Line Pass Capacitor (PME265) (European)	31-25-1371	P-220068
	Line Pass Capacitor (PME271) (PX)	31-25-1002	P-220022
19	Capacitor Cover (PX)	31-40-1009	P-610466
20	Switch Cover (European)	31-40-1007	P-480145
21	Power Transformer (U.S.A.)	31-27-1048	$\begin{aligned} & \text { P-100839 or } \\ & \text { P-100842 } \end{aligned}$
	Power Transformer (Canadian)		P-100842
	Power Transformer (European)	31-27-1049	$\begin{aligned} & \text { P-100840 or } \\ & \text { P-100843 } \end{aligned}$
	Power Transformer (PX)	31-27-1050	$\begin{aligned} & \text { P-100841 or } \\ & \text { P-100844 } \end{aligned}$
22	Power Switch (U.S.A., PX, Canadian)	31-16-1005	P-180382
	Power Switch (European)	31-16-1006	P-180383
	Block Terminal (European)	31-18-1008	P-320251
24	Insulation Sheet (European)	31-40-1023	P-690251
25	LED Holder (Rubber)	31-13-1261	P-680199
27	Headphone Jack	31-20-1010	P-190155
28	Insulation Cap (European)	31-40-1030	P-480379
29	Front Panel	31-14-1269	P-700531
30	Blind Sheet	31-40-1036	P-480371
31	Knob Guide	31-14-1223	P-610707
32	Cushion	31-14-1096	P-680298
33	Handle	31-14-1218	P-170235

REF. ${ }^{\text {NO. }}$	DESCRIPTION	$\begin{aligned} & \text { BSR/ADC } \\ & \text { PART NO. } \end{aligned}$	MFR'S PART NO.
34	Slide Control Knob (530)	31-14-1011	P-650530
35	Knob Lens	31-18-1010	P-610772
36	Push Knob (496)	31-14-1162	P-650496
37	LED Meter Knob (400)	31-14-1138	P-650400
38	Lever Knob (454)	31-14-1012	P-650454
39	Blind Sheet	31-14-1037	P-480394
40	Cabinet	31-14-1270	P-412414
41	Bottom Plate	31-14-1271	P-412415
42	Foot (A) (ABS)	31-13-1140	P-610461
43	Foot (B) (Rubber)	31-13-1141	P-680145
44	Number Plate (B)	31-59-1224	P-730184
45	P.C.B. Holder (SPCC)	31-13-1104	P-412416
46	LED Holder (ABS)	31-13-1105	P-610862
47	Heat Sink	31-13-1106	P-412418
HARDWARE			
REF. ${ }^{\text {NO. }}$	DESCRIPTION	BSR/ADC PART NO.	MFR'S PART NO.
S1	Tapping Screw $3 \times 6 \mathrm{BT}$-II		
S2	F-Lock Screw $3 \times 5 \mathrm{FL}$		
S3	Tapping Screw 3×8 TNL-II		
S4	PLAX Screw $3 \times 8 \mathrm{PT}$		
S5	F-Lock Screw $3 \times 8 \mathrm{FL}$		
S6	Tapping Screw $3 \times 8 \mathrm{BT}$-III		
S7	Tapping Screw $3 \times 20 \mathrm{BT}$-III		
S8	Tapping Screw $3 \times 8 \mathrm{BT}$-II		
S9	Tapping Screw $4 \times 10 \mathrm{BT}$-III		
S10	Screw $3 \times 6 \mathrm{~B}$		
N1	Nut 3N		
N2	Frange Nut 3FN		
N3	Nut 4N		
W1	Washer 3W		
W2	Washer SS-41		
W3	Washer 4W		
SW1	Spring Washer 4SW		
R1	Nylon Rivet (BLACK) $3 \times 4.5 \mathrm{BLK}$		
R2	Blind Rivet (BLACK) YB-420		
	Blind Rivet (BLACK) YB-423 (PX)		
R3	Blind Rivet (BLACK) YB-320		

MISCELLANEOUS PART LIST

DESCRIPTION	BSR/ADC PART NO.	MFR'S PART NO.
Fuse Label (PX)	31-59-1695	P-811195
Sheet	31-40-1011	P-480181
Master Carton (U.S.A., Canadian, European)	31-59-1716	P-801083
Master Carton (PX)	31-59-1717	P-801084
Double Master Carbon (PX)	31-59-1718	P-801085
Gift Box (U.S.A., European, PX)	31-59-1719	P-801086
Gift Box (Canadian)	31-59-1720	P-801087
Snow Box	31-59-1721	P-820743
Poly Bag for Set	31-59-1463	P-820454
Poly Bag for AC Cord	31-59-1252	P-820418
Patch Cord	31-46-1008	P-190124
Warranty Card (2 years) (U.S.A.)	31-59-2231	813010030A
Warranty Card (2 years) (Canadian)	31-59-1670	P-811174
Warranty Card (1 year) (European, PX)	31-59-1475	P-810782
Caution Label (U.S.A., European, PX)	31-59-1665	P-811301
Caution Label (Canadian)	31-59-1666	P-811038
QC Label	31-59-1227	P-810019
UL Label J (U.S.A.)	31-59-1229	P-810100
C.S.A. Label (Canadian)	31-59-1269	P-810024
Pass Label	31-59-1230	P-810183
〒 Mark Label (PX)	31-59-1621	P-810902
IHF Tag (U.S.A.)	30-853-0463	P-810770
AC Cord Tag (European)	31-59-1239	P-810698
Owner's Manual (U.S.A., European, PX)	31-59-1678	P-811182
Service Manual	31-59-1713	
Pin Terminal 314	31-13-1092	P-320314
Fuse Terminal (European)	31-18-1015	P-190332
Flat Wire .	31-47-1034	$\begin{aligned} & \text { P-320384 or } \\ & \text { P-320404 } \end{aligned}$
Flat Wire	31-47-1035	$\begin{aligned} & \text { P-320386 or } \\ & \text { P-320405 } \end{aligned}$
Flat Wire	31-47-1036	$\begin{aligned} & \text { P-320387 or } \\ & \text { P-320406 } \end{aligned}$
Flat Wire	31-47-1037	$\begin{aligned} & \text { P-320321 or } \\ & \text { P- } 320407 \end{aligned}$
Pin Terminal 245	31-13-1065	P-320245

SCHEMATIC: DIAGRAM

EXPLODED VIEW

AUSTRALIA	BSR (A'ASIA) PTY. LTD. Monarch Works P.O.Box 272, Anne Street St. Mary's, NSW 2760, Australia
CANADA	BSR (CANADA) LTD. P.O.Box 7003, Station 'B' 26 Clairville Drive Rexdale, ONT. M9V 4B3, Canada
EUROPE	BSR LTD. Powke Lane, Cradley Heath Warley, West Midlands B64 5OH England
	ADC(EUROPE) Am Boksberg 4 3203 Sarstedt/Hannover West Germany
JAPAN	BSR (JAPAN) LTD. No. 7 Azuma Building 1-9 Kanda Sakuma-cho Chiyoda-ku, Tokyo 101 Japan
NEW ZEALAND	BSR (NEW ZEALAND) LTD. G.P.O. Box 26-30 271 Victoria St. W. Auckland 1, New Zealand

BSR (USA) LTD.
ADC PROFESSIONAL PROD. GROUP

